| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngcifuestrc | Structured version Visualization version GIF version | ||
| Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcifuestrc.r | ⊢ 𝑅 = (RngCat‘𝑈) |
| rngcifuestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| rngcifuestrc.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngcifuestrc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcifuestrc.f | ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) |
| rngcifuestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) |
| Ref | Expression |
|---|---|
| rngcifuestrc | ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 2 | rngcifuestrc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | rngcifuestrc.r | . . . . . 6 ⊢ 𝑅 = (RngCat‘𝑈) | |
| 4 | rngcifuestrc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 3, 4, 2 | rngcbas 20506 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 6 | incom 4160 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 7 | 5, 6 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| 8 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝑅) = (Hom ‘𝑅) | |
| 9 | 3, 4, 2, 8 | rngchomfval 20507 | . . . 4 ⊢ (𝜑 → (Hom ‘𝑅) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 10 | 1, 2, 7, 9 | rnghmsubcsetc 20518 | . . 3 ⊢ (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
| 11 | eqid 2729 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) | |
| 12 | eqid 2729 | . . 3 ⊢ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) | |
| 13 | rngcifuestrc.f | . . . 4 ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) | |
| 14 | 3, 2, 5, 9 | rngcval 20503 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) |
| 15 | 14 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
| 16 | 4, 15 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
| 17 | 16 | reseq2d 5930 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
| 18 | 13, 17 | eqtrd 2764 | . . 3 ⊢ (𝜑 → 𝐹 = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
| 19 | rngcifuestrc.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) | |
| 20 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
| 21 | 9 | oveqdr 7377 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(Hom ‘𝑅)𝑦) = (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑦)) |
| 22 | ovres 7515 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHom 𝑦)) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHom 𝑦)) |
| 24 | 21, 23 | eqtr2d 2765 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 RngHom 𝑦) = (𝑥(Hom ‘𝑅)𝑦)) |
| 25 | 24 | reseq2d 5930 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ (𝑥 RngHom 𝑦)) = ( I ↾ (𝑥(Hom ‘𝑅)𝑦))) |
| 26 | 16, 20, 25 | mpoeq123dva 7423 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦))) = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
| 27 | 19, 26 | eqtrd 2764 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
| 28 | 10, 11, 12, 18, 27 | inclfusubc 17850 | . 2 ⊢ (𝜑 → 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺) |
| 29 | rngcifuestrc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 = (ExtStrCat‘𝑈)) |
| 31 | 14, 30 | oveq12d 7367 | . . 3 ⊢ (𝜑 → (𝑅 Func 𝐸) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))) |
| 32 | 31 | breqd 5103 | . 2 ⊢ (𝜑 → (𝐹(𝑅 Func 𝐸)𝐺 ↔ 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺)) |
| 33 | 28, 32 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 class class class wbr 5092 I cid 5513 × cxp 5617 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 Basecbs 17120 Hom chom 17172 ↾cat cresc 17715 Func cfunc 17761 ExtStrCatcestrc 18028 Rngcrng 20037 RngHom crnghm 20319 RngCatcrngc 20501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-hom 17185 df-cco 17186 df-0g 17345 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-resc 17718 df-subc 17719 df-func 17765 df-idfu 17766 df-full 17813 df-fth 17814 df-estrc 18029 df-mgm 18514 df-mgmhm 18566 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-ghm 19092 df-abl 19662 df-mgp 20026 df-rng 20038 df-rnghm 20321 df-rngc 20502 |
| This theorem is referenced by: funcrngcsetcALT 20526 |
| Copyright terms: Public domain | W3C validator |