Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcifuestrc Structured version   Visualization version   GIF version

Theorem rngcifuestrc 44981
Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.)
Hypotheses
Ref Expression
rngcifuestrc.r 𝑅 = (RngCat‘𝑈)
rngcifuestrc.e 𝐸 = (ExtStrCat‘𝑈)
rngcifuestrc.b 𝐵 = (Base‘𝑅)
rngcifuestrc.u (𝜑𝑈𝑉)
rngcifuestrc.f (𝜑𝐹 = ( I ↾ 𝐵))
rngcifuestrc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))
Assertion
Ref Expression
rngcifuestrc (𝜑𝐹(𝑅 Func 𝐸)𝐺)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rngcifuestrc
StepHypRef Expression
1 eqid 2759 . . . . 5 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
2 rngcifuestrc.u . . . . 5 (𝜑𝑈𝑉)
3 rngcifuestrc.r . . . . . . 7 𝑅 = (RngCat‘𝑈)
4 rngcifuestrc.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4, 2rngcbas 44949 . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Rng))
6 incom 4107 . . . . . 6 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
75, 6eqtrdi 2810 . . . . 5 (𝜑𝐵 = (Rng ∩ 𝑈))
8 eqid 2759 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
93, 4, 2, 8rngchomfval 44950 . . . . 5 (𝜑 → (Hom ‘𝑅) = ( RngHomo ↾ (𝐵 × 𝐵)))
101, 2, 7, 9rnghmsubcsetc 44961 . . . 4 (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈)))
1110idi 1 . . 3 (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈)))
12 eqid 2759 . . 3 ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))
13 eqid 2759 . . 3 (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))
14 rngcifuestrc.f . . . 4 (𝜑𝐹 = ( I ↾ 𝐵))
153, 2, 5, 9rngcval 44946 . . . . . . 7 (𝜑𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))
1615fveq2d 6663 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))
174, 16syl5eq 2806 . . . . 5 (𝜑𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))
1817reseq2d 5824 . . . 4 (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))))
1914, 18eqtrd 2794 . . 3 (𝜑𝐹 = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))))
20 rngcifuestrc.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))
2117adantr 485 . . . . 5 ((𝜑𝑥𝐵) → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))
229oveqdr 7179 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(Hom ‘𝑅)𝑦) = (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑦))
23 ovres 7311 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHomo 𝑦))
2423adantl 486 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHomo 𝑦))
2522, 24eqtr2d 2795 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 RngHomo 𝑦) = (𝑥(Hom ‘𝑅)𝑦))
2625reseq2d 5824 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ( I ↾ (𝑥 RngHomo 𝑦)) = ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))
2717, 21, 26mpoeq123dva 7223 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))) = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦))))
2820, 27eqtrd 2794 . . 3 (𝜑𝐺 = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦))))
2911, 12, 13, 19, 28inclfusubc 44851 . 2 (𝜑𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺)
30 rngcifuestrc.e . . . . 5 𝐸 = (ExtStrCat‘𝑈)
3130a1i 11 . . . 4 (𝜑𝐸 = (ExtStrCat‘𝑈))
3215, 31oveq12d 7169 . . 3 (𝜑 → (𝑅 Func 𝐸) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈)))
3332breqd 5044 . 2 (𝜑 → (𝐹(𝑅 Func 𝐸)𝐺𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺))
3429, 33mpbird 260 1 (𝜑𝐹(𝑅 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  cin 3858   class class class wbr 5033   I cid 5430   × cxp 5523  cres 5527  cfv 6336  (class class class)co 7151  cmpo 7153  Basecbs 16534  Hom chom 16627  cat cresc 17130  Subcatcsubc 17131   Func cfunc 17176  ExtStrCatcestrc 17431  Rngcrng 44858   RngHomo crngh 44869  RngCatcrngc 44941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-fz 12933  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-hom 16640  df-cco 16641  df-0g 16766  df-cat 16990  df-cid 16991  df-homf 16992  df-ssc 17132  df-resc 17133  df-subc 17134  df-func 17180  df-idfu 17181  df-full 17226  df-fth 17227  df-estrc 17432  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-mhm 18015  df-grp 18165  df-ghm 18416  df-abl 18969  df-mgp 19301  df-mgmhm 44759  df-rng0 44859  df-rnghomo 44871  df-rngc 44943
This theorem is referenced by:  funcrngcsetcALT  44983
  Copyright terms: Public domain W3C validator