Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcifuestrc | Structured version Visualization version GIF version |
Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.) |
Ref | Expression |
---|---|
rngcifuestrc.r | ⊢ 𝑅 = (RngCat‘𝑈) |
rngcifuestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
rngcifuestrc.b | ⊢ 𝐵 = (Base‘𝑅) |
rngcifuestrc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcifuestrc.f | ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) |
rngcifuestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦)))) |
Ref | Expression |
---|---|
rngcifuestrc | ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . . . 5 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
2 | rngcifuestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | rngcifuestrc.r | . . . . . . 7 ⊢ 𝑅 = (RngCat‘𝑈) | |
4 | rngcifuestrc.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4, 2 | rngcbas 44949 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
6 | incom 4107 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
7 | 5, 6 | eqtrdi 2810 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
8 | eqid 2759 | . . . . . 6 ⊢ (Hom ‘𝑅) = (Hom ‘𝑅) | |
9 | 3, 4, 2, 8 | rngchomfval 44950 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝑅) = ( RngHomo ↾ (𝐵 × 𝐵))) |
10 | 1, 2, 7, 9 | rnghmsubcsetc 44961 | . . . 4 ⊢ (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
11 | 10 | idi 1 | . . 3 ⊢ (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
12 | eqid 2759 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) | |
13 | eqid 2759 | . . 3 ⊢ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) | |
14 | rngcifuestrc.f | . . . 4 ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) | |
15 | 3, 2, 5, 9 | rngcval 44946 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) |
16 | 15 | fveq2d 6663 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
17 | 4, 16 | syl5eq 2806 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
18 | 17 | reseq2d 5824 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
19 | 14, 18 | eqtrd 2794 | . . 3 ⊢ (𝜑 → 𝐹 = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
20 | rngcifuestrc.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦)))) | |
21 | 17 | adantr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
22 | 9 | oveqdr 7179 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(Hom ‘𝑅)𝑦) = (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑦)) |
23 | ovres 7311 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHomo 𝑦)) | |
24 | 23 | adantl 486 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHomo 𝑦)) |
25 | 22, 24 | eqtr2d 2795 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 RngHomo 𝑦) = (𝑥(Hom ‘𝑅)𝑦)) |
26 | 25 | reseq2d 5824 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ (𝑥 RngHomo 𝑦)) = ( I ↾ (𝑥(Hom ‘𝑅)𝑦))) |
27 | 17, 21, 26 | mpoeq123dva 7223 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))) = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
28 | 20, 27 | eqtrd 2794 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
29 | 11, 12, 13, 19, 28 | inclfusubc 44851 | . 2 ⊢ (𝜑 → 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺) |
30 | rngcifuestrc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
31 | 30 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 = (ExtStrCat‘𝑈)) |
32 | 15, 31 | oveq12d 7169 | . . 3 ⊢ (𝜑 → (𝑅 Func 𝐸) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))) |
33 | 32 | breqd 5044 | . 2 ⊢ (𝜑 → (𝐹(𝑅 Func 𝐸)𝐺 ↔ 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺)) |
34 | 29, 33 | mpbird 260 | 1 ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∩ cin 3858 class class class wbr 5033 I cid 5430 × cxp 5523 ↾ cres 5527 ‘cfv 6336 (class class class)co 7151 ∈ cmpo 7153 Basecbs 16534 Hom chom 16627 ↾cat cresc 17130 Subcatcsubc 17131 Func cfunc 17176 ExtStrCatcestrc 17431 Rngcrng 44858 RngHomo crngh 44869 RngCatcrngc 44941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-pm 8420 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-fz 12933 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-hom 16640 df-cco 16641 df-0g 16766 df-cat 16990 df-cid 16991 df-homf 16992 df-ssc 17132 df-resc 17133 df-subc 17134 df-func 17180 df-idfu 17181 df-full 17226 df-fth 17227 df-estrc 17432 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-mhm 18015 df-grp 18165 df-ghm 18416 df-abl 18969 df-mgp 19301 df-mgmhm 44759 df-rng0 44859 df-rnghomo 44871 df-rngc 44943 |
This theorem is referenced by: funcrngcsetcALT 44983 |
Copyright terms: Public domain | W3C validator |