| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngcifuestrc | Structured version Visualization version GIF version | ||
| Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcifuestrc.r | ⊢ 𝑅 = (RngCat‘𝑈) |
| rngcifuestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| rngcifuestrc.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngcifuestrc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcifuestrc.f | ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) |
| rngcifuestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) |
| Ref | Expression |
|---|---|
| rngcifuestrc | ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 2 | rngcifuestrc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | rngcifuestrc.r | . . . . . 6 ⊢ 𝑅 = (RngCat‘𝑈) | |
| 4 | rngcifuestrc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 3, 4, 2 | rngcbas 20537 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 6 | incom 4175 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 7 | 5, 6 | eqtrdi 2781 | . . . 4 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| 8 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝑅) = (Hom ‘𝑅) | |
| 9 | 3, 4, 2, 8 | rngchomfval 20538 | . . . 4 ⊢ (𝜑 → (Hom ‘𝑅) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 10 | 1, 2, 7, 9 | rnghmsubcsetc 20549 | . . 3 ⊢ (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
| 11 | eqid 2730 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) | |
| 12 | eqid 2730 | . . 3 ⊢ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) | |
| 13 | rngcifuestrc.f | . . . 4 ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) | |
| 14 | 3, 2, 5, 9 | rngcval 20534 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) |
| 15 | 14 | fveq2d 6865 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
| 16 | 4, 15 | eqtrid 2777 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
| 17 | 16 | reseq2d 5953 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
| 18 | 13, 17 | eqtrd 2765 | . . 3 ⊢ (𝜑 → 𝐹 = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
| 19 | rngcifuestrc.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) | |
| 20 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
| 21 | 9 | oveqdr 7418 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(Hom ‘𝑅)𝑦) = (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑦)) |
| 22 | ovres 7558 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHom 𝑦)) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHom 𝑦)) |
| 24 | 21, 23 | eqtr2d 2766 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 RngHom 𝑦) = (𝑥(Hom ‘𝑅)𝑦)) |
| 25 | 24 | reseq2d 5953 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ (𝑥 RngHom 𝑦)) = ( I ↾ (𝑥(Hom ‘𝑅)𝑦))) |
| 26 | 16, 20, 25 | mpoeq123dva 7466 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦))) = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
| 27 | 19, 26 | eqtrd 2765 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
| 28 | 10, 11, 12, 18, 27 | inclfusubc 17912 | . 2 ⊢ (𝜑 → 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺) |
| 29 | rngcifuestrc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 = (ExtStrCat‘𝑈)) |
| 31 | 14, 30 | oveq12d 7408 | . . 3 ⊢ (𝜑 → (𝑅 Func 𝐸) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))) |
| 32 | 31 | breqd 5121 | . 2 ⊢ (𝜑 → (𝐹(𝑅 Func 𝐸)𝐺 ↔ 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺)) |
| 33 | 28, 32 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 class class class wbr 5110 I cid 5535 × cxp 5639 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Basecbs 17186 Hom chom 17238 ↾cat cresc 17777 Func cfunc 17823 ExtStrCatcestrc 18090 Rngcrng 20068 RngHom crnghm 20350 RngCatcrngc 20532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-hom 17251 df-cco 17252 df-0g 17411 df-cat 17636 df-cid 17637 df-homf 17638 df-ssc 17779 df-resc 17780 df-subc 17781 df-func 17827 df-idfu 17828 df-full 17875 df-fth 17876 df-estrc 18091 df-mgm 18574 df-mgmhm 18626 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-ghm 19152 df-abl 19720 df-mgp 20057 df-rng 20069 df-rnghm 20352 df-rngc 20533 |
| This theorem is referenced by: funcrngcsetcALT 20557 |
| Copyright terms: Public domain | W3C validator |