| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngcifuestrc | Structured version Visualization version GIF version | ||
| Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcifuestrc.r | ⊢ 𝑅 = (RngCat‘𝑈) |
| rngcifuestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| rngcifuestrc.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngcifuestrc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcifuestrc.f | ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) |
| rngcifuestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) |
| Ref | Expression |
|---|---|
| rngcifuestrc | ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 2 | rngcifuestrc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | rngcifuestrc.r | . . . . . 6 ⊢ 𝑅 = (RngCat‘𝑈) | |
| 4 | rngcifuestrc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 3, 4, 2 | rngcbas 20536 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 6 | incom 4156 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 7 | 5, 6 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| 8 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝑅) = (Hom ‘𝑅) | |
| 9 | 3, 4, 2, 8 | rngchomfval 20537 | . . . 4 ⊢ (𝜑 → (Hom ‘𝑅) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 10 | 1, 2, 7, 9 | rnghmsubcsetc 20548 | . . 3 ⊢ (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
| 11 | eqid 2731 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) | |
| 12 | eqid 2731 | . . 3 ⊢ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) | |
| 13 | rngcifuestrc.f | . . . 4 ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) | |
| 14 | 3, 2, 5, 9 | rngcval 20533 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) |
| 15 | 14 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
| 16 | 4, 15 | eqtrid 2778 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
| 17 | 16 | reseq2d 5927 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
| 18 | 13, 17 | eqtrd 2766 | . . 3 ⊢ (𝜑 → 𝐹 = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
| 19 | rngcifuestrc.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) | |
| 20 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
| 21 | 9 | oveqdr 7374 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(Hom ‘𝑅)𝑦) = (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑦)) |
| 22 | ovres 7512 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHom 𝑦)) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHom 𝑦)) |
| 24 | 21, 23 | eqtr2d 2767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 RngHom 𝑦) = (𝑥(Hom ‘𝑅)𝑦)) |
| 25 | 24 | reseq2d 5927 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ (𝑥 RngHom 𝑦)) = ( I ↾ (𝑥(Hom ‘𝑅)𝑦))) |
| 26 | 16, 20, 25 | mpoeq123dva 7420 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦))) = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
| 27 | 19, 26 | eqtrd 2766 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
| 28 | 10, 11, 12, 18, 27 | inclfusubc 17850 | . 2 ⊢ (𝜑 → 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺) |
| 29 | rngcifuestrc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 = (ExtStrCat‘𝑈)) |
| 31 | 14, 30 | oveq12d 7364 | . . 3 ⊢ (𝜑 → (𝑅 Func 𝐸) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))) |
| 32 | 31 | breqd 5100 | . 2 ⊢ (𝜑 → (𝐹(𝑅 Func 𝐸)𝐺 ↔ 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺)) |
| 33 | 28, 32 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 class class class wbr 5089 I cid 5508 × cxp 5612 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17120 Hom chom 17172 ↾cat cresc 17715 Func cfunc 17761 ExtStrCatcestrc 18028 Rngcrng 20070 RngHom crnghm 20352 RngCatcrngc 20531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-hom 17185 df-cco 17186 df-0g 17345 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-resc 17718 df-subc 17719 df-func 17765 df-idfu 17766 df-full 17813 df-fth 17814 df-estrc 18029 df-mgm 18548 df-mgmhm 18600 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-ghm 19125 df-abl 19695 df-mgp 20059 df-rng 20071 df-rnghm 20354 df-rngc 20532 |
| This theorem is referenced by: funcrngcsetcALT 20556 |
| Copyright terms: Public domain | W3C validator |