![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcifuestrc | Structured version Visualization version GIF version |
Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.) |
Ref | Expression |
---|---|
rngcifuestrc.r | ⊢ 𝑅 = (RngCat‘𝑈) |
rngcifuestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
rngcifuestrc.b | ⊢ 𝐵 = (Base‘𝑅) |
rngcifuestrc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcifuestrc.f | ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) |
rngcifuestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦)))) |
Ref | Expression |
---|---|
rngcifuestrc | ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . . . 5 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
2 | rngcifuestrc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | rngcifuestrc.r | . . . . . . 7 ⊢ 𝑅 = (RngCat‘𝑈) | |
4 | rngcifuestrc.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4, 2 | rngcbas 42764 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
6 | incom 4003 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
7 | 5, 6 | syl6eq 2849 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
8 | eqid 2799 | . . . . . 6 ⊢ (Hom ‘𝑅) = (Hom ‘𝑅) | |
9 | 3, 4, 2, 8 | rngchomfval 42765 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝑅) = ( RngHomo ↾ (𝐵 × 𝐵))) |
10 | 1, 2, 7, 9 | rnghmsubcsetc 42776 | . . . 4 ⊢ (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
11 | 10 | idi 2 | . . 3 ⊢ (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
12 | eqid 2799 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) | |
13 | eqid 2799 | . . 3 ⊢ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) | |
14 | rngcifuestrc.f | . . . 4 ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) | |
15 | 3, 2, 5, 9 | rngcval 42761 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) |
16 | 15 | fveq2d 6415 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
17 | 4, 16 | syl5eq 2845 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
18 | 17 | reseq2d 5600 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
19 | 14, 18 | eqtrd 2833 | . . 3 ⊢ (𝜑 → 𝐹 = ( I ↾ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))))) |
20 | rngcifuestrc.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦)))) | |
21 | 17 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))) |
22 | 9 | oveqdr 6906 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(Hom ‘𝑅)𝑦) = (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑦)) |
23 | ovres 7034 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHomo 𝑦)) | |
24 | 23 | adantl 474 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑦) = (𝑥 RngHomo 𝑦)) |
25 | 22, 24 | eqtr2d 2834 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 RngHomo 𝑦) = (𝑥(Hom ‘𝑅)𝑦)) |
26 | 25 | reseq2d 5600 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ (𝑥 RngHomo 𝑦)) = ( I ↾ (𝑥(Hom ‘𝑅)𝑦))) |
27 | 17, 21, 26 | mpt2eq123dva 6950 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))) = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
28 | 20, 27 | eqtrd 2833 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))), 𝑦 ∈ (Base‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅))) ↦ ( I ↾ (𝑥(Hom ‘𝑅)𝑦)))) |
29 | 11, 12, 13, 19, 28 | inclfusubc 42666 | . 2 ⊢ (𝜑 → 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺) |
30 | rngcifuestrc.e | . . . . 5 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
31 | 30 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 = (ExtStrCat‘𝑈)) |
32 | 15, 31 | oveq12d 6896 | . . 3 ⊢ (𝜑 → (𝑅 Func 𝐸) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))) |
33 | 32 | breqd 4854 | . 2 ⊢ (𝜑 → (𝐹(𝑅 Func 𝐸)𝐺 ↔ 𝐹(((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func (ExtStrCat‘𝑈))𝐺)) |
34 | 29, 33 | mpbird 249 | 1 ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∩ cin 3768 class class class wbr 4843 I cid 5219 × cxp 5310 ↾ cres 5314 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 Basecbs 16184 Hom chom 16278 ↾cat cresc 16782 Subcatcsubc 16783 Func cfunc 16828 ExtStrCatcestrc 17076 Rngcrng 42673 RngHomo crngh 42684 RngCatcrngc 42756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-hom 16291 df-cco 16292 df-0g 16417 df-cat 16643 df-cid 16644 df-homf 16645 df-ssc 16784 df-resc 16785 df-subc 16786 df-func 16832 df-idfu 16833 df-full 16878 df-fth 16879 df-estrc 17077 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-grp 17741 df-ghm 17971 df-abl 18511 df-mgp 18806 df-mgmhm 42578 df-rng0 42674 df-rnghomo 42686 df-rngc 42758 |
This theorem is referenced by: funcrngcsetcALT 42798 |
Copyright terms: Public domain | W3C validator |