| Step | Hyp | Ref
| Expression |
| 1 | | funcrngcsetcALT.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| 2 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → (Base‘𝑥) = (Base‘𝑢)) |
| 3 | 2 | cbvmptv 5255 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 ↦ (Base‘𝑥)) = (𝑢 ∈ 𝐵 ↦ (Base‘𝑢)) |
| 4 | 1, 3 | eqtrdi 2793 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑢 ∈ 𝐵 ↦ (Base‘𝑢))) |
| 5 | | coires1 6284 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)) = ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ↾ 𝐵) |
| 6 | | funcrngcsetcALT.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (RngCat‘𝑈) |
| 7 | | funcrngcsetcALT.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑅) |
| 8 | | funcrngcsetcALT.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ WUni) |
| 9 | 6, 7, 8 | rngcbas 20621 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 10 | 9 | eleq2d 2827 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Rng))) |
| 11 | | elin 3967 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
| 12 | 11 | simplbi 497 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑈 ∩ Rng) → 𝑥 ∈ 𝑈) |
| 13 | 10, 12 | biimtrdi 253 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 14 | 13 | ssrdv 3989 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
| 15 | 14 | resmptd 6058 |
. . . . . . 7
⊢ (𝜑 → ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ↾ 𝐵) = (𝑢 ∈ 𝐵 ↦ (Base‘𝑢))) |
| 16 | 5, 15 | eqtr2id 2790 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ 𝐵 ↦ (Base‘𝑢)) = ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵))) |
| 17 | 4, 16 | eqtrd 2777 |
. . . . 5
⊢ (𝜑 → 𝐹 = ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵))) |
| 18 | | funcrngcsetcALT.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) |
| 19 | | coires1 6284 |
. . . . . . . . 9
⊢ (( I
↾ ((Base‘𝑦)
↑m (Base‘𝑥))) ∘ ( I ↾ (𝑥 RngHom 𝑦))) = (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ↾
(𝑥 RngHom 𝑦)) |
| 20 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑥) =
(Base‘𝑥) |
| 21 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑦) =
(Base‘𝑦) |
| 22 | 20, 21 | rnghmf 20448 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑥 RngHom 𝑦) → 𝑧:(Base‘𝑥)⟶(Base‘𝑦)) |
| 23 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑦)
∈ V |
| 24 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑥)
∈ V |
| 25 | 23, 24 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢
((Base‘𝑦)
∈ V ∧ (Base‘𝑥) ∈ V) |
| 26 | | elmapg 8879 |
. . . . . . . . . . . . 13
⊢
(((Base‘𝑦)
∈ V ∧ (Base‘𝑥) ∈ V) → (𝑧 ∈ ((Base‘𝑦) ↑m (Base‘𝑥)) ↔ 𝑧:(Base‘𝑥)⟶(Base‘𝑦))) |
| 27 | 25, 26 | mp1i 13 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑧 ∈ ((Base‘𝑦) ↑m (Base‘𝑥)) ↔ 𝑧:(Base‘𝑥)⟶(Base‘𝑦))) |
| 28 | 22, 27 | imbitrrid 246 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑧 ∈ (𝑥 RngHom 𝑦) → 𝑧 ∈ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
| 29 | 28 | ssrdv 3989 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 RngHom 𝑦) ⊆ ((Base‘𝑦) ↑m (Base‘𝑥))) |
| 30 | 29 | resabs1d 6026 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ↾
(𝑥 RngHom 𝑦)) = ( I ↾ (𝑥 RngHom 𝑦))) |
| 31 | 19, 30 | eqtr2id 2790 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ( I ↾ (𝑥 RngHom 𝑦)) = (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHom 𝑦)))) |
| 32 | 31 | mpoeq3dva 7510 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHom 𝑦))))) |
| 33 | 18, 32 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHom 𝑦))))) |
| 34 | 7 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 35 | 7 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 36 | | fvresi 7193 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
| 38 | 37 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
| 39 | | fvresi 7193 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
| 40 | 39 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
| 41 | 40 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
| 42 | 38, 41 | oveq12d 7449 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) = (𝑥(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))𝑦)) |
| 43 | | eqidd 2738 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) = (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))) |
| 44 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → 𝑧 = 𝑦) |
| 45 | 44 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → (Base‘𝑧) = (Base‘𝑦)) |
| 46 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → 𝑤 = 𝑥) |
| 47 | 46 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → (Base‘𝑤) = (Base‘𝑥)) |
| 48 | 45, 47 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → ((Base‘𝑧) ↑m (Base‘𝑤)) = ((Base‘𝑦) ↑m
(Base‘𝑥))) |
| 49 | 48 | reseq2d 5997 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))) = ( I
↾ ((Base‘𝑦)
↑m (Base‘𝑥)))) |
| 50 | 13 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵 → (𝜑 → 𝑥 ∈ 𝑈)) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝑥 ∈ 𝑈)) |
| 52 | 51 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝑈) |
| 53 | 9 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (𝑈 ∩ Rng))) |
| 54 | | elin 3967 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝑈 ∩ Rng) ↔ (𝑦 ∈ 𝑈 ∧ 𝑦 ∈ Rng)) |
| 55 | 54 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝑈 ∩ Rng) → 𝑦 ∈ 𝑈) |
| 56 | 53, 55 | biimtrdi 253 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
| 57 | 56 | a1d 25 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈))) |
| 58 | 57 | imp32 418 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝑈) |
| 59 | | ovex 7464 |
. . . . . . . . . . . 12
⊢
((Base‘𝑦)
↑m (Base‘𝑥)) ∈ V |
| 60 | 59 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V) |
| 61 | 60 | resiexd 7236 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∈
V) |
| 62 | 43, 49, 52, 58, 61 | ovmpod 7585 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))𝑦) = ( I ↾
((Base‘𝑦)
↑m (Base‘𝑥)))) |
| 63 | 42, 62 | eqtr2d 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) = ((( I
↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦))) |
| 64 | | eqidd 2738 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))) |
| 65 | | oveq12 7440 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝑥 ∧ 𝑔 = 𝑦) → (𝑓 RngHom 𝑔) = (𝑥 RngHom 𝑦)) |
| 66 | 65 | reseq2d 5997 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝑥 ∧ 𝑔 = 𝑦) → ( I ↾ (𝑓 RngHom 𝑔)) = ( I ↾ (𝑥 RngHom 𝑦))) |
| 67 | 66 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑓 = 𝑥 ∧ 𝑔 = 𝑦)) → ( I ↾ (𝑓 RngHom 𝑔)) = ( I ↾ (𝑥 RngHom 𝑦))) |
| 68 | | simprl 771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 69 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 70 | | ovex 7464 |
. . . . . . . . . . . 12
⊢ (𝑥 RngHom 𝑦) ∈ V |
| 71 | 70 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 RngHom 𝑦) ∈ V) |
| 72 | 71 | resiexd 7236 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ (𝑥 RngHom 𝑦)) ∈ V) |
| 73 | 64, 67, 68, 69, 72 | ovmpod 7585 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))𝑦) = ( I ↾ (𝑥 RngHom 𝑦))) |
| 74 | 73 | eqcomd 2743 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ (𝑥 RngHom 𝑦)) = (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))𝑦)) |
| 75 | 63, 74 | coeq12d 5875 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHom 𝑦))) = (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))𝑦))) |
| 76 | 34, 35, 75 | mpoeq123dva 7507 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHom 𝑦)))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))𝑦)))) |
| 77 | 33, 76 | eqtrd 2777 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))𝑦)))) |
| 78 | 17, 77 | opeq12d 4881 |
. . . 4
⊢ (𝜑 → 〈𝐹, 𝐺〉 = 〈((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))𝑦)))〉) |
| 79 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 80 | | eqid 2737 |
. . . . . 6
⊢
(ExtStrCat‘𝑈)
= (ExtStrCat‘𝑈) |
| 81 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) |
| 82 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))) |
| 83 | 6, 80, 7, 8, 81, 82 | rngcifuestrc 20639 |
. . . . 5
⊢ (𝜑 → ( I ↾ 𝐵)(𝑅 Func (ExtStrCat‘𝑈))(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))) |
| 84 | | funcrngcsetcALT.s |
. . . . . 6
⊢ 𝑆 = (SetCat‘𝑈) |
| 85 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈)) |
| 86 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 87 | 80, 8 | estrcbas 18169 |
. . . . . . 7
⊢ (𝜑 → 𝑈 = (Base‘(ExtStrCat‘𝑈))) |
| 88 | 87 | mpteq1d 5237 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) = (𝑢 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ (Base‘𝑢))) |
| 89 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑢 → (Base‘𝑤) = (Base‘𝑢)) |
| 90 | 89 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑢 → ((Base‘𝑧) ↑m (Base‘𝑤)) = ((Base‘𝑧) ↑m
(Base‘𝑢))) |
| 91 | 90 | reseq2d 5997 |
. . . . . . . . 9
⊢ (𝑤 = 𝑢 → ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))) = ( I
↾ ((Base‘𝑧)
↑m (Base‘𝑢)))) |
| 92 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑣 → (Base‘𝑧) = (Base‘𝑣)) |
| 93 | 92 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑣 → ((Base‘𝑧) ↑m (Base‘𝑢)) = ((Base‘𝑣) ↑m
(Base‘𝑢))) |
| 94 | 93 | reseq2d 5997 |
. . . . . . . . 9
⊢ (𝑧 = 𝑣 → ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑢))) = ( I
↾ ((Base‘𝑣)
↑m (Base‘𝑢)))) |
| 95 | 91, 94 | cbvmpov 7528 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) = (𝑢 ∈ 𝑈, 𝑣 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑣) ↑m
(Base‘𝑢)))) |
| 96 | 95 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) = (𝑢 ∈ 𝑈, 𝑣 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑣) ↑m
(Base‘𝑢))))) |
| 97 | | eqidd 2738 |
. . . . . . . 8
⊢ (𝜑 → ( I ↾
((Base‘𝑣)
↑m (Base‘𝑢))) = ( I ↾ ((Base‘𝑣) ↑m
(Base‘𝑢)))) |
| 98 | 87, 87, 97 | mpoeq123dv 7508 |
. . . . . . 7
⊢ (𝜑 → (𝑢 ∈ 𝑈, 𝑣 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑣) ↑m
(Base‘𝑢)))) = (𝑢 ∈
(Base‘(ExtStrCat‘𝑈)), 𝑣 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾
((Base‘𝑣)
↑m (Base‘𝑢))))) |
| 99 | 96, 98 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) = (𝑢 ∈
(Base‘(ExtStrCat‘𝑈)), 𝑣 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾
((Base‘𝑣)
↑m (Base‘𝑢))))) |
| 100 | 80, 84, 85, 86, 8, 88, 99 | funcestrcsetc 18194 |
. . . . 5
⊢ (𝜑 → (𝑢 ∈ 𝑈 ↦ (Base‘𝑢))((ExtStrCat‘𝑈) Func 𝑆)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))) |
| 101 | 79, 83, 100 | cofuval2 17932 |
. . . 4
⊢ (𝜑 → (〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∘func 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))〉) = 〈((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))𝑦)))〉) |
| 102 | 78, 101 | eqtr4d 2780 |
. . 3
⊢ (𝜑 → 〈𝐹, 𝐺〉 = (〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∘func 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))〉)) |
| 103 | | df-br 5144 |
. . . . 5
⊢ (( I
↾ 𝐵)(𝑅 Func (ExtStrCat‘𝑈))(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔))) ↔ 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))〉 ∈ (𝑅 Func (ExtStrCat‘𝑈))) |
| 104 | 83, 103 | sylib 218 |
. . . 4
⊢ (𝜑 → 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))〉 ∈ (𝑅 Func (ExtStrCat‘𝑈))) |
| 105 | | df-br 5144 |
. . . . 5
⊢ ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢))((ExtStrCat‘𝑈) Func 𝑆)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) ↔
〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∈ ((ExtStrCat‘𝑈)
Func 𝑆)) |
| 106 | 100, 105 | sylib 218 |
. . . 4
⊢ (𝜑 → 〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∈ ((ExtStrCat‘𝑈)
Func 𝑆)) |
| 107 | 104, 106 | cofucl 17933 |
. . 3
⊢ (𝜑 → (〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∘func 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHom 𝑔)))〉) ∈ (𝑅 Func 𝑆)) |
| 108 | 102, 107 | eqeltrd 2841 |
. 2
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑅 Func 𝑆)) |
| 109 | | df-br 5144 |
. 2
⊢ (𝐹(𝑅 Func 𝑆)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑅 Func 𝑆)) |
| 110 | 108, 109 | sylibr 234 |
1
⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) |