Step | Hyp | Ref
| Expression |
1 | | funcrngcsetcALT.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
2 | | fveq2 6768 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → (Base‘𝑥) = (Base‘𝑢)) |
3 | 2 | cbvmptv 5191 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 ↦ (Base‘𝑥)) = (𝑢 ∈ 𝐵 ↦ (Base‘𝑢)) |
4 | 1, 3 | eqtrdi 2795 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑢 ∈ 𝐵 ↦ (Base‘𝑢))) |
5 | | coires1 6165 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)) = ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ↾ 𝐵) |
6 | | funcrngcsetcALT.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (RngCat‘𝑈) |
7 | | funcrngcsetcALT.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑅) |
8 | | funcrngcsetcALT.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ WUni) |
9 | 6, 7, 8 | rngcbas 45475 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
10 | 9 | eleq2d 2825 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Rng))) |
11 | | elin 3907 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
12 | 11 | simplbi 497 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑈 ∩ Rng) → 𝑥 ∈ 𝑈) |
13 | 10, 12 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
14 | 13 | ssrdv 3931 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
15 | 14 | resmptd 5945 |
. . . . . . 7
⊢ (𝜑 → ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ↾ 𝐵) = (𝑢 ∈ 𝐵 ↦ (Base‘𝑢))) |
16 | 5, 15 | eqtr2id 2792 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ 𝐵 ↦ (Base‘𝑢)) = ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵))) |
17 | 4, 16 | eqtrd 2779 |
. . . . 5
⊢ (𝜑 → 𝐹 = ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵))) |
18 | | funcrngcsetcALT.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦)))) |
19 | | coires1 6165 |
. . . . . . . . 9
⊢ (( I
↾ ((Base‘𝑦)
↑m (Base‘𝑥))) ∘ ( I ↾ (𝑥 RngHomo 𝑦))) = (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ↾
(𝑥 RngHomo 𝑦)) |
20 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑥) =
(Base‘𝑥) |
21 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑦) =
(Base‘𝑦) |
22 | 20, 21 | rnghmf 45409 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑥 RngHomo 𝑦) → 𝑧:(Base‘𝑥)⟶(Base‘𝑦)) |
23 | | fvex 6781 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑦)
∈ V |
24 | | fvex 6781 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑥)
∈ V |
25 | 23, 24 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢
((Base‘𝑦)
∈ V ∧ (Base‘𝑥) ∈ V) |
26 | | elmapg 8602 |
. . . . . . . . . . . . 13
⊢
(((Base‘𝑦)
∈ V ∧ (Base‘𝑥) ∈ V) → (𝑧 ∈ ((Base‘𝑦) ↑m (Base‘𝑥)) ↔ 𝑧:(Base‘𝑥)⟶(Base‘𝑦))) |
27 | 25, 26 | mp1i 13 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑧 ∈ ((Base‘𝑦) ↑m (Base‘𝑥)) ↔ 𝑧:(Base‘𝑥)⟶(Base‘𝑦))) |
28 | 22, 27 | syl5ibr 245 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑧 ∈ (𝑥 RngHomo 𝑦) → 𝑧 ∈ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
29 | 28 | ssrdv 3931 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 RngHomo 𝑦) ⊆ ((Base‘𝑦) ↑m (Base‘𝑥))) |
30 | 29 | resabs1d 5919 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ↾
(𝑥 RngHomo 𝑦)) = ( I ↾ (𝑥 RngHomo 𝑦))) |
31 | 19, 30 | eqtr2id 2792 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ( I ↾ (𝑥 RngHomo 𝑦)) = (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHomo 𝑦)))) |
32 | 31 | mpoeq3dva 7343 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHomo 𝑦))))) |
33 | 18, 32 | eqtrd 2779 |
. . . . . 6
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHomo 𝑦))))) |
34 | 7 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
35 | 7 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
36 | | fvresi 7039 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
37 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
38 | 37 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
39 | | fvresi 7039 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
40 | 39 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
41 | 40 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
42 | 38, 41 | oveq12d 7286 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) = (𝑥(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))𝑦)) |
43 | | eqidd 2740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) = (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))) |
44 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → 𝑧 = 𝑦) |
45 | 44 | fveq2d 6772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → (Base‘𝑧) = (Base‘𝑦)) |
46 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → 𝑤 = 𝑥) |
47 | 46 | fveq2d 6772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → (Base‘𝑤) = (Base‘𝑥)) |
48 | 45, 47 | oveq12d 7286 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → ((Base‘𝑧) ↑m (Base‘𝑤)) = ((Base‘𝑦) ↑m
(Base‘𝑥))) |
49 | 48 | reseq2d 5888 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦)) → ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))) = ( I
↾ ((Base‘𝑦)
↑m (Base‘𝑥)))) |
50 | 13 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵 → (𝜑 → 𝑥 ∈ 𝑈)) |
51 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝑥 ∈ 𝑈)) |
52 | 51 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝑈) |
53 | 9 | eleq2d 2825 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (𝑈 ∩ Rng))) |
54 | | elin 3907 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝑈 ∩ Rng) ↔ (𝑦 ∈ 𝑈 ∧ 𝑦 ∈ Rng)) |
55 | 54 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝑈 ∩ Rng) → 𝑦 ∈ 𝑈) |
56 | 53, 55 | syl6bi 252 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
57 | 56 | a1d 25 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈))) |
58 | 57 | imp32 418 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝑈) |
59 | | ovex 7301 |
. . . . . . . . . . . 12
⊢
((Base‘𝑦)
↑m (Base‘𝑥)) ∈ V |
60 | 59 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V) |
61 | 60 | resiexd 7086 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∈
V) |
62 | 43, 49, 52, 58, 61 | ovmpod 7416 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))𝑦) = ( I ↾
((Base‘𝑦)
↑m (Base‘𝑥)))) |
63 | 42, 62 | eqtr2d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) = ((( I
↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦))) |
64 | | eqidd 2740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))) |
65 | | oveq12 7277 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝑥 ∧ 𝑔 = 𝑦) → (𝑓 RngHomo 𝑔) = (𝑥 RngHomo 𝑦)) |
66 | 65 | reseq2d 5888 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝑥 ∧ 𝑔 = 𝑦) → ( I ↾ (𝑓 RngHomo 𝑔)) = ( I ↾ (𝑥 RngHomo 𝑦))) |
67 | 66 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑓 = 𝑥 ∧ 𝑔 = 𝑦)) → ( I ↾ (𝑓 RngHomo 𝑔)) = ( I ↾ (𝑥 RngHomo 𝑦))) |
68 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
69 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
70 | | ovex 7301 |
. . . . . . . . . . . 12
⊢ (𝑥 RngHomo 𝑦) ∈ V |
71 | 70 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 RngHomo 𝑦) ∈ V) |
72 | 71 | resiexd 7086 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ (𝑥 RngHomo 𝑦)) ∈ V) |
73 | 64, 67, 68, 69, 72 | ovmpod 7416 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦) = ( I ↾ (𝑥 RngHomo 𝑦))) |
74 | 73 | eqcomd 2745 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ( I ↾ (𝑥 RngHomo 𝑦)) = (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦)) |
75 | 63, 74 | coeq12d 5770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHomo 𝑦))) = (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦))) |
76 | 34, 35, 75 | mpoeq123dva 7340 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))) ∘ (
I ↾ (𝑥 RngHomo 𝑦)))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦)))) |
77 | 33, 76 | eqtrd 2779 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦)))) |
78 | 17, 77 | opeq12d 4817 |
. . . 4
⊢ (𝜑 → 〈𝐹, 𝐺〉 = 〈((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦)))〉) |
79 | | eqid 2739 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
80 | | eqid 2739 |
. . . . . 6
⊢
(ExtStrCat‘𝑈)
= (ExtStrCat‘𝑈) |
81 | | eqidd 2740 |
. . . . . 6
⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) |
82 | | eqidd 2740 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))) |
83 | 6, 80, 7, 8, 81, 82 | rngcifuestrc 45507 |
. . . . 5
⊢ (𝜑 → ( I ↾ 𝐵)(𝑅 Func (ExtStrCat‘𝑈))(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))) |
84 | | funcrngcsetcALT.s |
. . . . . 6
⊢ 𝑆 = (SetCat‘𝑈) |
85 | | eqid 2739 |
. . . . . 6
⊢
(Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈)) |
86 | | eqid 2739 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
87 | 80, 8 | estrcbas 17822 |
. . . . . . 7
⊢ (𝜑 → 𝑈 = (Base‘(ExtStrCat‘𝑈))) |
88 | 87 | mpteq1d 5173 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) = (𝑢 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ (Base‘𝑢))) |
89 | | fveq2 6768 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑢 → (Base‘𝑤) = (Base‘𝑢)) |
90 | 89 | oveq2d 7284 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑢 → ((Base‘𝑧) ↑m (Base‘𝑤)) = ((Base‘𝑧) ↑m
(Base‘𝑢))) |
91 | 90 | reseq2d 5888 |
. . . . . . . . 9
⊢ (𝑤 = 𝑢 → ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))) = ( I
↾ ((Base‘𝑧)
↑m (Base‘𝑢)))) |
92 | | fveq2 6768 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑣 → (Base‘𝑧) = (Base‘𝑣)) |
93 | 92 | oveq1d 7283 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑣 → ((Base‘𝑧) ↑m (Base‘𝑢)) = ((Base‘𝑣) ↑m
(Base‘𝑢))) |
94 | 93 | reseq2d 5888 |
. . . . . . . . 9
⊢ (𝑧 = 𝑣 → ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑢))) = ( I
↾ ((Base‘𝑣)
↑m (Base‘𝑢)))) |
95 | 91, 94 | cbvmpov 7361 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) = (𝑢 ∈ 𝑈, 𝑣 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑣) ↑m
(Base‘𝑢)))) |
96 | 95 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) = (𝑢 ∈ 𝑈, 𝑣 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑣) ↑m
(Base‘𝑢))))) |
97 | | eqidd 2740 |
. . . . . . . 8
⊢ (𝜑 → ( I ↾
((Base‘𝑣)
↑m (Base‘𝑢))) = ( I ↾ ((Base‘𝑣) ↑m
(Base‘𝑢)))) |
98 | 87, 87, 97 | mpoeq123dv 7341 |
. . . . . . 7
⊢ (𝜑 → (𝑢 ∈ 𝑈, 𝑣 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑣) ↑m
(Base‘𝑢)))) = (𝑢 ∈
(Base‘(ExtStrCat‘𝑈)), 𝑣 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾
((Base‘𝑣)
↑m (Base‘𝑢))))) |
99 | 96, 98 | eqtrd 2779 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) = (𝑢 ∈
(Base‘(ExtStrCat‘𝑈)), 𝑣 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾
((Base‘𝑣)
↑m (Base‘𝑢))))) |
100 | 80, 84, 85, 86, 8, 88, 99 | funcestrcsetc 17847 |
. . . . 5
⊢ (𝜑 → (𝑢 ∈ 𝑈 ↦ (Base‘𝑢))((ExtStrCat‘𝑈) Func 𝑆)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))) |
101 | 79, 83, 100 | cofuval2 17583 |
. . . 4
⊢ (𝜑 → (〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∘func 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))〉) = 〈((𝑢 ∈ 𝑈 ↦ (Base‘𝑢)) ∘ ( I ↾ 𝐵)), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (((( I ↾ 𝐵)‘𝑥)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))(( I
↾ 𝐵)‘𝑦)) ∘ (𝑥(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))𝑦)))〉) |
102 | 78, 101 | eqtr4d 2782 |
. . 3
⊢ (𝜑 → 〈𝐹, 𝐺〉 = (〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∘func 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))〉)) |
103 | | df-br 5079 |
. . . . 5
⊢ (( I
↾ 𝐵)(𝑅 Func (ExtStrCat‘𝑈))(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔))) ↔ 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))〉 ∈ (𝑅 Func (ExtStrCat‘𝑈))) |
104 | 83, 103 | sylib 217 |
. . . 4
⊢ (𝜑 → 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))〉 ∈ (𝑅 Func (ExtStrCat‘𝑈))) |
105 | | df-br 5079 |
. . . . 5
⊢ ((𝑢 ∈ 𝑈 ↦ (Base‘𝑢))((ExtStrCat‘𝑈) Func 𝑆)(𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤)))) ↔
〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∈ ((ExtStrCat‘𝑈)
Func 𝑆)) |
106 | 100, 105 | sylib 217 |
. . . 4
⊢ (𝜑 → 〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∈ ((ExtStrCat‘𝑈)
Func 𝑆)) |
107 | 104, 106 | cofucl 17584 |
. . 3
⊢ (𝜑 → (〈(𝑢 ∈ 𝑈 ↦ (Base‘𝑢)), (𝑤 ∈ 𝑈, 𝑧 ∈ 𝑈 ↦ ( I ↾ ((Base‘𝑧) ↑m
(Base‘𝑤))))〉
∘func 〈( I ↾ 𝐵), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ ( I ↾ (𝑓 RngHomo 𝑔)))〉) ∈ (𝑅 Func 𝑆)) |
108 | 102, 107 | eqeltrd 2840 |
. 2
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑅 Func 𝑆)) |
109 | | df-br 5079 |
. 2
⊢ (𝐹(𝑅 Func 𝑆)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑅 Func 𝑆)) |
110 | 108, 109 | sylibr 233 |
1
⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) |