Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcrngcsetcALT Structured version   Visualization version   GIF version

Theorem funcrngcsetcALT 46986
Description: Alternate proof of funcrngcsetc 46985, using cofuval2 17842 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 46984, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 18106. Surprisingly, this proof is longer than the direct proof given in funcrngcsetc 46985. (Contributed by AV, 30-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcrngcsetcALT.r 𝑅 = (RngCatβ€˜π‘ˆ)
funcrngcsetcALT.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcrngcsetcALT.b 𝐡 = (Baseβ€˜π‘…)
funcrngcsetcALT.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcrngcsetcALT.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
funcrngcsetcALT.g (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RngHom 𝑦))))
Assertion
Ref Expression
funcrngcsetcALT (πœ‘ β†’ 𝐹(𝑅 Func 𝑆)𝐺)
Distinct variable groups:   π‘₯,𝐡,𝑦   π‘₯,𝑅,𝑦   π‘₯,π‘ˆ,𝑦   πœ‘,π‘₯,𝑦
Allowed substitution hints:   𝑆(π‘₯,𝑦)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)

Proof of Theorem funcrngcsetcALT
Dummy variables 𝑓 𝑔 𝑒 𝑀 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcrngcsetcALT.f . . . . . . 7 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
2 fveq2 6891 . . . . . . . 8 (π‘₯ = 𝑒 β†’ (Baseβ€˜π‘₯) = (Baseβ€˜π‘’))
32cbvmptv 5261 . . . . . . 7 (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)) = (𝑒 ∈ 𝐡 ↦ (Baseβ€˜π‘’))
41, 3eqtrdi 2787 . . . . . 6 (πœ‘ β†’ 𝐹 = (𝑒 ∈ 𝐡 ↦ (Baseβ€˜π‘’)))
5 coires1 6263 . . . . . . 7 ((𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)) ∘ ( I β†Ύ 𝐡)) = ((𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)) β†Ύ 𝐡)
6 funcrngcsetcALT.r . . . . . . . . . . . 12 𝑅 = (RngCatβ€˜π‘ˆ)
7 funcrngcsetcALT.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜π‘…)
8 funcrngcsetcALT.u . . . . . . . . . . . 12 (πœ‘ β†’ π‘ˆ ∈ WUni)
96, 7, 8rngcbas 46952 . . . . . . . . . . 11 (πœ‘ β†’ 𝐡 = (π‘ˆ ∩ Rng))
109eleq2d 2818 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ 𝐡 ↔ π‘₯ ∈ (π‘ˆ ∩ Rng)))
11 elin 3964 . . . . . . . . . . 11 (π‘₯ ∈ (π‘ˆ ∩ Rng) ↔ (π‘₯ ∈ π‘ˆ ∧ π‘₯ ∈ Rng))
1211simplbi 497 . . . . . . . . . 10 (π‘₯ ∈ (π‘ˆ ∩ Rng) β†’ π‘₯ ∈ π‘ˆ)
1310, 12syl6bi 253 . . . . . . . . 9 (πœ‘ β†’ (π‘₯ ∈ 𝐡 β†’ π‘₯ ∈ π‘ˆ))
1413ssrdv 3988 . . . . . . . 8 (πœ‘ β†’ 𝐡 βŠ† π‘ˆ)
1514resmptd 6040 . . . . . . 7 (πœ‘ β†’ ((𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)) β†Ύ 𝐡) = (𝑒 ∈ 𝐡 ↦ (Baseβ€˜π‘’)))
165, 15eqtr2id 2784 . . . . . 6 (πœ‘ β†’ (𝑒 ∈ 𝐡 ↦ (Baseβ€˜π‘’)) = ((𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)) ∘ ( I β†Ύ 𝐡)))
174, 16eqtrd 2771 . . . . 5 (πœ‘ β†’ 𝐹 = ((𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)) ∘ ( I β†Ύ 𝐡)))
18 funcrngcsetcALT.g . . . . . . 7 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RngHom 𝑦))))
19 coires1 6263 . . . . . . . . 9 (( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) ∘ ( I β†Ύ (π‘₯ RngHom 𝑦))) = (( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) β†Ύ (π‘₯ RngHom 𝑦))
20 eqid 2731 . . . . . . . . . . . . 13 (Baseβ€˜π‘₯) = (Baseβ€˜π‘₯)
21 eqid 2731 . . . . . . . . . . . . 13 (Baseβ€˜π‘¦) = (Baseβ€˜π‘¦)
2220, 21rnghmf 20340 . . . . . . . . . . . 12 (𝑧 ∈ (π‘₯ RngHom 𝑦) β†’ 𝑧:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))
23 fvex 6904 . . . . . . . . . . . . . 14 (Baseβ€˜π‘¦) ∈ V
24 fvex 6904 . . . . . . . . . . . . . 14 (Baseβ€˜π‘₯) ∈ V
2523, 24pm3.2i 470 . . . . . . . . . . . . 13 ((Baseβ€˜π‘¦) ∈ V ∧ (Baseβ€˜π‘₯) ∈ V)
26 elmapg 8837 . . . . . . . . . . . . 13 (((Baseβ€˜π‘¦) ∈ V ∧ (Baseβ€˜π‘₯) ∈ V) β†’ (𝑧 ∈ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)) ↔ 𝑧:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
2725, 26mp1i 13 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (𝑧 ∈ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)) ↔ 𝑧:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
2822, 27imbitrrid 245 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (𝑧 ∈ (π‘₯ RngHom 𝑦) β†’ 𝑧 ∈ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))
2928ssrdv 3988 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ RngHom 𝑦) βŠ† ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))
3029resabs1d 6012 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) β†Ύ (π‘₯ RngHom 𝑦)) = ( I β†Ύ (π‘₯ RngHom 𝑦)))
3119, 30eqtr2id 2784 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ ( I β†Ύ (π‘₯ RngHom 𝑦)) = (( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) ∘ ( I β†Ύ (π‘₯ RngHom 𝑦))))
3231mpoeq3dva 7489 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RngHom 𝑦))) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) ∘ ( I β†Ύ (π‘₯ RngHom 𝑦)))))
3318, 32eqtrd 2771 . . . . . 6 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) ∘ ( I β†Ύ (π‘₯ RngHom 𝑦)))))
347a1i 11 . . . . . . 7 (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))
357a1i 11 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝐡 = (Baseβ€˜π‘…))
36 fvresi 7173 . . . . . . . . . . . 12 (π‘₯ ∈ 𝐡 β†’ (( I β†Ύ 𝐡)β€˜π‘₯) = π‘₯)
3736adantr 480 . . . . . . . . . . 11 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (( I β†Ύ 𝐡)β€˜π‘₯) = π‘₯)
3837adantl 481 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (( I β†Ύ 𝐡)β€˜π‘₯) = π‘₯)
39 fvresi 7173 . . . . . . . . . . . 12 (𝑦 ∈ 𝐡 β†’ (( I β†Ύ 𝐡)β€˜π‘¦) = 𝑦)
4039adantl 481 . . . . . . . . . . 11 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (( I β†Ύ 𝐡)β€˜π‘¦) = 𝑦)
4140adantl 481 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (( I β†Ύ 𝐡)β€˜π‘¦) = 𝑦)
4238, 41oveq12d 7430 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ((( I β†Ύ 𝐡)β€˜π‘₯)(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))(( I β†Ύ 𝐡)β€˜π‘¦)) = (π‘₯(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))𝑦))
43 eqidd 2732 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€)))) = (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€)))))
44 simprr 770 . . . . . . . . . . . . 13 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ (𝑀 = π‘₯ ∧ 𝑧 = 𝑦)) β†’ 𝑧 = 𝑦)
4544fveq2d 6895 . . . . . . . . . . . 12 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ (𝑀 = π‘₯ ∧ 𝑧 = 𝑦)) β†’ (Baseβ€˜π‘§) = (Baseβ€˜π‘¦))
46 simprl 768 . . . . . . . . . . . . 13 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ (𝑀 = π‘₯ ∧ 𝑧 = 𝑦)) β†’ 𝑀 = π‘₯)
4746fveq2d 6895 . . . . . . . . . . . 12 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ (𝑀 = π‘₯ ∧ 𝑧 = 𝑦)) β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘₯))
4845, 47oveq12d 7430 . . . . . . . . . . 11 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ (𝑀 = π‘₯ ∧ 𝑧 = 𝑦)) β†’ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€)) = ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))
4948reseq2d 5981 . . . . . . . . . 10 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ (𝑀 = π‘₯ ∧ 𝑧 = 𝑦)) β†’ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))) = ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))
5013com12 32 . . . . . . . . . . . 12 (π‘₯ ∈ 𝐡 β†’ (πœ‘ β†’ π‘₯ ∈ π‘ˆ))
5150adantr 480 . . . . . . . . . . 11 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (πœ‘ β†’ π‘₯ ∈ π‘ˆ))
5251impcom 407 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ π‘₯ ∈ π‘ˆ)
539eleq2d 2818 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝑦 ∈ 𝐡 ↔ 𝑦 ∈ (π‘ˆ ∩ Rng)))
54 elin 3964 . . . . . . . . . . . . . 14 (𝑦 ∈ (π‘ˆ ∩ Rng) ↔ (𝑦 ∈ π‘ˆ ∧ 𝑦 ∈ Rng))
5554simplbi 497 . . . . . . . . . . . . 13 (𝑦 ∈ (π‘ˆ ∩ Rng) β†’ 𝑦 ∈ π‘ˆ)
5653, 55syl6bi 253 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑦 ∈ 𝐡 β†’ 𝑦 ∈ π‘ˆ))
5756a1d 25 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ∈ 𝐡 β†’ (𝑦 ∈ 𝐡 β†’ 𝑦 ∈ π‘ˆ)))
5857imp32 418 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ 𝑦 ∈ π‘ˆ)
59 ovex 7445 . . . . . . . . . . . 12 ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)) ∈ V
6059a1i 11 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)) ∈ V)
6160resiexd 7220 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) ∈ V)
6243, 49, 52, 58, 61ovmpod 7563 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))𝑦) = ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))
6342, 62eqtr2d 2772 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) = ((( I β†Ύ 𝐡)β€˜π‘₯)(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))(( I β†Ύ 𝐡)β€˜π‘¦)))
64 eqidd 2732 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔))))
65 oveq12 7421 . . . . . . . . . . . 12 ((𝑓 = π‘₯ ∧ 𝑔 = 𝑦) β†’ (𝑓 RngHom 𝑔) = (π‘₯ RngHom 𝑦))
6665reseq2d 5981 . . . . . . . . . . 11 ((𝑓 = π‘₯ ∧ 𝑔 = 𝑦) β†’ ( I β†Ύ (𝑓 RngHom 𝑔)) = ( I β†Ύ (π‘₯ RngHom 𝑦)))
6766adantl 481 . . . . . . . . . 10 (((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ (𝑓 = π‘₯ ∧ 𝑔 = 𝑦)) β†’ ( I β†Ύ (𝑓 RngHom 𝑔)) = ( I β†Ύ (π‘₯ RngHom 𝑦)))
68 simprl 768 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ π‘₯ ∈ 𝐡)
69 simprr 770 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ 𝑦 ∈ 𝐡)
70 ovex 7445 . . . . . . . . . . . 12 (π‘₯ RngHom 𝑦) ∈ V
7170a1i 11 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯ RngHom 𝑦) ∈ V)
7271resiexd 7220 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ( I β†Ύ (π‘₯ RngHom 𝑦)) ∈ V)
7364, 67, 68, 69, 72ovmpod 7563 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))𝑦) = ( I β†Ύ (π‘₯ RngHom 𝑦)))
7473eqcomd 2737 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ( I β†Ύ (π‘₯ RngHom 𝑦)) = (π‘₯(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))𝑦))
7563, 74coeq12d 5864 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) ∘ ( I β†Ύ (π‘₯ RngHom 𝑦))) = (((( I β†Ύ 𝐡)β€˜π‘₯)(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))(( I β†Ύ 𝐡)β€˜π‘¦)) ∘ (π‘₯(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))𝑦)))
7634, 35, 75mpoeq123dva 7486 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) ∘ ( I β†Ύ (π‘₯ RngHom 𝑦)))) = (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘…) ↦ (((( I β†Ύ 𝐡)β€˜π‘₯)(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))(( I β†Ύ 𝐡)β€˜π‘¦)) ∘ (π‘₯(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))𝑦))))
7733, 76eqtrd 2771 . . . . 5 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘…) ↦ (((( I β†Ύ 𝐡)β€˜π‘₯)(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))(( I β†Ύ 𝐡)β€˜π‘¦)) ∘ (π‘₯(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))𝑦))))
7817, 77opeq12d 4881 . . . 4 (πœ‘ β†’ ⟨𝐹, 𝐺⟩ = ⟨((𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)) ∘ ( I β†Ύ 𝐡)), (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘…) ↦ (((( I β†Ύ 𝐡)β€˜π‘₯)(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))(( I β†Ύ 𝐡)β€˜π‘¦)) ∘ (π‘₯(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))𝑦)))⟩)
79 eqid 2731 . . . . 5 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
80 eqid 2731 . . . . . 6 (ExtStrCatβ€˜π‘ˆ) = (ExtStrCatβ€˜π‘ˆ)
81 eqidd 2732 . . . . . 6 (πœ‘ β†’ ( I β†Ύ 𝐡) = ( I β†Ύ 𝐡))
82 eqidd 2732 . . . . . 6 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔))))
836, 80, 7, 8, 81, 82rngcifuestrc 46984 . . . . 5 (πœ‘ β†’ ( I β†Ύ 𝐡)(𝑅 Func (ExtStrCatβ€˜π‘ˆ))(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔))))
84 funcrngcsetcALT.s . . . . . 6 𝑆 = (SetCatβ€˜π‘ˆ)
85 eqid 2731 . . . . . 6 (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)) = (Baseβ€˜(ExtStrCatβ€˜π‘ˆ))
86 eqid 2731 . . . . . 6 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
8780, 8estrcbas 18081 . . . . . . 7 (πœ‘ β†’ π‘ˆ = (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)))
8887mpteq1d 5243 . . . . . 6 (πœ‘ β†’ (𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)) = (𝑒 ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)) ↦ (Baseβ€˜π‘’)))
89 fveq2 6891 . . . . . . . . . . 11 (𝑀 = 𝑒 β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘’))
9089oveq2d 7428 . . . . . . . . . 10 (𝑀 = 𝑒 β†’ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€)) = ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘’)))
9190reseq2d 5981 . . . . . . . . 9 (𝑀 = 𝑒 β†’ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))) = ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘’))))
92 fveq2 6891 . . . . . . . . . . 11 (𝑧 = 𝑣 β†’ (Baseβ€˜π‘§) = (Baseβ€˜π‘£))
9392oveq1d 7427 . . . . . . . . . 10 (𝑧 = 𝑣 β†’ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘’)) = ((Baseβ€˜π‘£) ↑m (Baseβ€˜π‘’)))
9493reseq2d 5981 . . . . . . . . 9 (𝑧 = 𝑣 β†’ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘’))) = ( I β†Ύ ((Baseβ€˜π‘£) ↑m (Baseβ€˜π‘’))))
9591, 94cbvmpov 7507 . . . . . . . 8 (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€)))) = (𝑒 ∈ π‘ˆ, 𝑣 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘£) ↑m (Baseβ€˜π‘’))))
9695a1i 11 . . . . . . 7 (πœ‘ β†’ (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€)))) = (𝑒 ∈ π‘ˆ, 𝑣 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘£) ↑m (Baseβ€˜π‘’)))))
97 eqidd 2732 . . . . . . . 8 (πœ‘ β†’ ( I β†Ύ ((Baseβ€˜π‘£) ↑m (Baseβ€˜π‘’))) = ( I β†Ύ ((Baseβ€˜π‘£) ↑m (Baseβ€˜π‘’))))
9887, 87, 97mpoeq123dv 7487 . . . . . . 7 (πœ‘ β†’ (𝑒 ∈ π‘ˆ, 𝑣 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘£) ↑m (Baseβ€˜π‘’)))) = (𝑒 ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)), 𝑣 ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)) ↦ ( I β†Ύ ((Baseβ€˜π‘£) ↑m (Baseβ€˜π‘’)))))
9996, 98eqtrd 2771 . . . . . 6 (πœ‘ β†’ (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€)))) = (𝑒 ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)), 𝑣 ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)) ↦ ( I β†Ύ ((Baseβ€˜π‘£) ↑m (Baseβ€˜π‘’)))))
10080, 84, 85, 86, 8, 88, 99funcestrcsetc 18106 . . . . 5 (πœ‘ β†’ (𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’))((ExtStrCatβ€˜π‘ˆ) Func 𝑆)(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€)))))
10179, 83, 100cofuval2 17842 . . . 4 (πœ‘ β†’ (⟨(𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)), (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))⟩ ∘func ⟨( I β†Ύ 𝐡), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))⟩) = ⟨((𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)) ∘ ( I β†Ύ 𝐡)), (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘…) ↦ (((( I β†Ύ 𝐡)β€˜π‘₯)(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))(( I β†Ύ 𝐡)β€˜π‘¦)) ∘ (π‘₯(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))𝑦)))⟩)
10278, 101eqtr4d 2774 . . 3 (πœ‘ β†’ ⟨𝐹, 𝐺⟩ = (⟨(𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)), (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))⟩ ∘func ⟨( I β†Ύ 𝐡), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))⟩))
103 df-br 5149 . . . . 5 (( I β†Ύ 𝐡)(𝑅 Func (ExtStrCatβ€˜π‘ˆ))(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔))) ↔ ⟨( I β†Ύ 𝐡), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))⟩ ∈ (𝑅 Func (ExtStrCatβ€˜π‘ˆ)))
10483, 103sylib 217 . . . 4 (πœ‘ β†’ ⟨( I β†Ύ 𝐡), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))⟩ ∈ (𝑅 Func (ExtStrCatβ€˜π‘ˆ)))
105 df-br 5149 . . . . 5 ((𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’))((ExtStrCatβ€˜π‘ˆ) Func 𝑆)(𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€)))) ↔ ⟨(𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)), (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))⟩ ∈ ((ExtStrCatβ€˜π‘ˆ) Func 𝑆))
106100, 105sylib 217 . . . 4 (πœ‘ β†’ ⟨(𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)), (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))⟩ ∈ ((ExtStrCatβ€˜π‘ˆ) Func 𝑆))
107104, 106cofucl 17843 . . 3 (πœ‘ β†’ (⟨(𝑒 ∈ π‘ˆ ↦ (Baseβ€˜π‘’)), (𝑀 ∈ π‘ˆ, 𝑧 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘§) ↑m (Baseβ€˜π‘€))))⟩ ∘func ⟨( I β†Ύ 𝐡), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ ( I β†Ύ (𝑓 RngHom 𝑔)))⟩) ∈ (𝑅 Func 𝑆))
108102, 107eqeltrd 2832 . 2 (πœ‘ β†’ ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
109 df-br 5149 . 2 (𝐹(𝑅 Func 𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
110108, 109sylibr 233 1 (πœ‘ β†’ 𝐹(𝑅 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  Vcvv 3473   ∩ cin 3947  βŸ¨cop 4634   class class class wbr 5148   ↦ cmpt 5231   I cid 5573   β†Ύ cres 5678   ∘ ccom 5680  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414   ↑m cmap 8824  WUnicwun 10699  Basecbs 17149   Func cfunc 17809   ∘func ccofu 17811  SetCatcsetc 18030  ExtStrCatcestrc 18078  Rngcrng 20047   RngHom crnghm 20326  RngCatcrngc 46944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-wun 10701  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-hom 17226  df-cco 17227  df-0g 17392  df-cat 17617  df-cid 17618  df-homf 17619  df-ssc 17762  df-resc 17763  df-subc 17764  df-func 17813  df-idfu 17814  df-cofu 17815  df-full 17860  df-fth 17861  df-setc 18031  df-estrc 18079  df-mgm 18566  df-mgmhm 18618  df-sgrp 18645  df-mnd 18661  df-mhm 18706  df-grp 18859  df-ghm 19129  df-abl 19693  df-mgp 20030  df-rng 20048  df-rnghm 20328  df-rngc 46946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator