Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcrngcsetc Structured version   Visualization version   GIF version

Theorem funcrngcsetc 42599
Description: The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT 42600, using cofuval2 16814 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 42598, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 17057. (Contributed by AV, 26-Mar-2020.)
Hypotheses
Ref Expression
funcrngcsetc.r 𝑅 = (RngCat‘𝑈)
funcrngcsetc.s 𝑆 = (SetCat‘𝑈)
funcrngcsetc.b 𝐵 = (Base‘𝑅)
funcrngcsetc.u (𝜑𝑈 ∈ WUni)
funcrngcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcrngcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))
Assertion
Ref Expression
funcrngcsetc (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcrngcsetc
Dummy variables 𝑎 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . . . . 6 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
2 funcrngcsetc.s . . . . . 6 𝑆 = (SetCat‘𝑈)
3 eqid 2765 . . . . . 6 (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈))
4 eqid 2765 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
5 funcrngcsetc.u . . . . . 6 (𝜑𝑈 ∈ WUni)
61, 5estrcbas 17032 . . . . . . 7 (𝜑𝑈 = (Base‘(ExtStrCat‘𝑈)))
76mpteq1d 4897 . . . . . 6 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥)) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ (Base‘𝑥)))
8 mpt2eq12 6913 . . . . . . 7 ((𝑈 = (Base‘(ExtStrCat‘𝑈)) ∧ 𝑈 = (Base‘(ExtStrCat‘𝑈))) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑦 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
96, 6, 8syl2anc 579 . . . . . 6 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑦 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
101, 2, 3, 4, 5, 7, 9funcestrcsetc 17057 . . . . 5 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥))((ExtStrCat‘𝑈) Func 𝑆)(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
11 df-br 4810 . . . . 5 ((𝑥𝑈 ↦ (Base‘𝑥))((ExtStrCat‘𝑈) Func 𝑆)(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) ↔ ⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
1210, 11sylib 209 . . . 4 (𝜑 → ⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
13 funcrngcsetc.r . . . . . . 7 𝑅 = (RngCat‘𝑈)
14 eqid 2765 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1513, 14, 5rngcbas 42566 . . . . . 6 (𝜑 → (Base‘𝑅) = (𝑈 ∩ Rng))
16 incom 3967 . . . . . 6 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
1715, 16syl6eq 2815 . . . . 5 (𝜑 → (Base‘𝑅) = (Rng ∩ 𝑈))
18 eqid 2765 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
1913, 14, 5, 18rngchomfval 42567 . . . . 5 (𝜑 → (Hom ‘𝑅) = ( RngHomo ↾ ((Base‘𝑅) × (Base‘𝑅))))
201, 5, 17, 19rnghmsubcsetc 42578 . . . 4 (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈)))
2112, 20funcres 16823 . . 3 (𝜑 → (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)) ∈ (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func 𝑆))
22 mptexg 6677 . . . . . 6 (𝑈 ∈ WUni → (𝑥𝑈 ↦ (Base‘𝑥)) ∈ V)
235, 22syl 17 . . . . 5 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥)) ∈ V)
24 fvex 6388 . . . . . 6 (Hom ‘𝑅) ∈ V
2524a1i 11 . . . . 5 (𝜑 → (Hom ‘𝑅) ∈ V)
26 mpt2exga 7447 . . . . . 6 ((𝑈 ∈ WUni ∧ 𝑈 ∈ WUni) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) ∈ V)
275, 5, 26syl2anc 579 . . . . 5 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) ∈ V)
2815, 19rnghmresfn 42564 . . . . 5 (𝜑 → (Hom ‘𝑅) Fn ((Base‘𝑅) × (Base‘𝑅)))
2923, 25, 27, 28resfval2 16820 . . . 4 (𝜑 → (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)) = ⟨((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))⟩)
30 inss1 3992 . . . . . . . 8 (𝑈 ∩ Rng) ⊆ 𝑈
3115, 30syl6eqss 3815 . . . . . . 7 (𝜑 → (Base‘𝑅) ⊆ 𝑈)
3231resmptd 5629 . . . . . 6 (𝜑 → ((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)) = (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)))
33 funcrngcsetc.f . . . . . . 7 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
34 funcrngcsetc.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3534a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑅))
3635mpteq1d 4897 . . . . . . 7 (𝜑 → (𝑥𝐵 ↦ (Base‘𝑥)) = (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)))
3733, 36eqtr2d 2800 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)) = 𝐹)
3832, 37eqtrd 2799 . . . . 5 (𝜑 → ((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)) = 𝐹)
39 funcrngcsetc.g . . . . . 6 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))
40 oveq1 6849 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 RngHomo 𝑦) = (𝑎 RngHomo 𝑦))
4140reseq2d 5565 . . . . . . . 8 (𝑥 = 𝑎 → ( I ↾ (𝑥 RngHomo 𝑦)) = ( I ↾ (𝑎 RngHomo 𝑦)))
42 oveq2 6850 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑎 RngHomo 𝑦) = (𝑎 RngHomo 𝑏))
4342reseq2d 5565 . . . . . . . 8 (𝑦 = 𝑏 → ( I ↾ (𝑎 RngHomo 𝑦)) = ( I ↾ (𝑎 RngHomo 𝑏)))
4441, 43cbvmpt2v 6933 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))) = (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RngHomo 𝑏)))
4544a1i 11 . . . . . 6 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))) = (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RngHomo 𝑏))))
4634a1i 11 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐵 = (Base‘𝑅))
47 eqidd 2766 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) = (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
48 fveq2 6375 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
49 fveq2 6375 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
5048, 49oveqan12rd 6862 . . . . . . . . . . . 12 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
5150reseq2d 5565 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = ( I ↾ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
5251adantl 473 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = ( I ↾ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
5334, 31syl5eqss 3809 . . . . . . . . . . . . . 14 (𝜑𝐵𝑈)
5453sseld 3760 . . . . . . . . . . . . 13 (𝜑 → (𝑎𝐵𝑎𝑈))
5554com12 32 . . . . . . . . . . . 12 (𝑎𝐵 → (𝜑𝑎𝑈))
5655adantr 472 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
5756impcom 396 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
5853sseld 3760 . . . . . . . . . . . 12 (𝜑 → (𝑏𝐵𝑏𝑈))
5958adantld 484 . . . . . . . . . . 11 (𝜑 → ((𝑎𝐵𝑏𝐵) → 𝑏𝑈))
6059imp 395 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
61 ovexd 6876 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ∈ V)
6261resiexd 6673 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( I ↾ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))) ∈ V)
6347, 52, 57, 60, 62ovmpt2d 6986 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))𝑏) = ( I ↾ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
6463reseq1d 5564 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)) = (( I ↾ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))) ↾ (𝑎(Hom ‘𝑅)𝑏)))
655adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
66 simprl 787 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
67 simprr 789 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
6813, 34, 65, 18, 66, 67rngchom 42568 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝑅)𝑏) = (𝑎 RngHomo 𝑏))
6968reseq2d 5565 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))) ↾ (𝑎(Hom ‘𝑅)𝑏)) = (( I ↾ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))) ↾ (𝑎 RngHomo 𝑏)))
70 eqid 2765 . . . . . . . . . . . 12 (Base‘𝑎) = (Base‘𝑎)
71 eqid 2765 . . . . . . . . . . . 12 (Base‘𝑏) = (Base‘𝑏)
7270, 71rnghmf 42500 . . . . . . . . . . 11 (𝑓 ∈ (𝑎 RngHomo 𝑏) → 𝑓:(Base‘𝑎)⟶(Base‘𝑏))
73 fvex 6388 . . . . . . . . . . . . . 14 (Base‘𝑏) ∈ V
74 fvex 6388 . . . . . . . . . . . . . 14 (Base‘𝑎) ∈ V
7573, 74pm3.2i 462 . . . . . . . . . . . . 13 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
7675a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V))
77 elmapg 8073 . . . . . . . . . . . 12 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → (𝑓 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ 𝑓:(Base‘𝑎)⟶(Base‘𝑏)))
7876, 77syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑓 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ 𝑓:(Base‘𝑎)⟶(Base‘𝑏)))
7972, 78syl5ibr 237 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑓 ∈ (𝑎 RngHomo 𝑏) → 𝑓 ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
8079ssrdv 3767 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 RngHomo 𝑏) ⊆ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
8180resabs1d 5603 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))) ↾ (𝑎 RngHomo 𝑏)) = ( I ↾ (𝑎 RngHomo 𝑏)))
8264, 69, 813eqtrrd 2804 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( I ↾ (𝑎 RngHomo 𝑏)) = ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))
8335, 46, 82mpt2eq123dva 6914 . . . . . 6 (𝜑 → (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RngHomo 𝑏))) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏))))
8439, 45, 833eqtrrd 2804 . . . . 5 (𝜑 → (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏))) = 𝐺)
8538, 84opeq12d 4567 . . . 4 (𝜑 → ⟨((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))⟩ = ⟨𝐹, 𝐺⟩)
8629, 85eqtr2d 2800 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ = (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)))
8713, 5, 15, 19rngcval 42563 . . . 4 (𝜑𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))
8887oveq1d 6857 . . 3 (𝜑 → (𝑅 Func 𝑆) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func 𝑆))
8921, 86, 883eltr4d 2859 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
90 df-br 4810 . 2 (𝐹(𝑅 Func 𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
9189, 90sylibr 225 1 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  cin 3731  cop 4340   class class class wbr 4809  cmpt 4888   I cid 5184  cres 5279  wf 6064  cfv 6068  (class class class)co 6842  cmpt2 6844  𝑚 cmap 8060  WUnicwun 9775  Basecbs 16132  Hom chom 16227  cat cresc 16735   Func cfunc 16781  f cresf 16784  SetCatcsetc 16992  ExtStrCatcestrc 17029  Rngcrng 42475   RngHomo crngh 42486  RngCatcrngc 42558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-wun 9777  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-hom 16240  df-cco 16241  df-0g 16370  df-cat 16596  df-cid 16597  df-homf 16598  df-ssc 16737  df-resc 16738  df-subc 16739  df-func 16785  df-resf 16788  df-setc 16993  df-estrc 17030  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-mhm 17603  df-grp 17694  df-ghm 17924  df-abl 18462  df-mgp 18757  df-mgmhm 42380  df-rng0 42476  df-rnghomo 42488  df-rngc 42560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator