Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcrngcsetc Structured version   Visualization version   GIF version

Theorem funcrngcsetc 44289
Description: The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT 44290, using cofuval2 17157 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 44288, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 17399. (Contributed by AV, 26-Mar-2020.)
Hypotheses
Ref Expression
funcrngcsetc.r 𝑅 = (RngCat‘𝑈)
funcrngcsetc.s 𝑆 = (SetCat‘𝑈)
funcrngcsetc.b 𝐵 = (Base‘𝑅)
funcrngcsetc.u (𝜑𝑈 ∈ WUni)
funcrngcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcrngcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))
Assertion
Ref Expression
funcrngcsetc (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcrngcsetc
Dummy variables 𝑎 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . 6 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
2 funcrngcsetc.s . . . . . 6 𝑆 = (SetCat‘𝑈)
3 eqid 2821 . . . . . 6 (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈))
4 eqid 2821 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
5 funcrngcsetc.u . . . . . 6 (𝜑𝑈 ∈ WUni)
61, 5estrcbas 17375 . . . . . . 7 (𝜑𝑈 = (Base‘(ExtStrCat‘𝑈)))
76mpteq1d 5155 . . . . . 6 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥)) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ (Base‘𝑥)))
8 mpoeq12 7227 . . . . . . 7 ((𝑈 = (Base‘(ExtStrCat‘𝑈)) ∧ 𝑈 = (Base‘(ExtStrCat‘𝑈))) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑦 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
96, 6, 8syl2anc 586 . . . . . 6 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑦 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
101, 2, 3, 4, 5, 7, 9funcestrcsetc 17399 . . . . 5 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥))((ExtStrCat‘𝑈) Func 𝑆)(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
11 df-br 5067 . . . . 5 ((𝑥𝑈 ↦ (Base‘𝑥))((ExtStrCat‘𝑈) Func 𝑆)(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) ↔ ⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
1210, 11sylib 220 . . . 4 (𝜑 → ⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
13 funcrngcsetc.r . . . . . . 7 𝑅 = (RngCat‘𝑈)
14 eqid 2821 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1513, 14, 5rngcbas 44256 . . . . . 6 (𝜑 → (Base‘𝑅) = (𝑈 ∩ Rng))
16 incom 4178 . . . . . 6 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
1715, 16syl6eq 2872 . . . . 5 (𝜑 → (Base‘𝑅) = (Rng ∩ 𝑈))
18 eqid 2821 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
1913, 14, 5, 18rngchomfval 44257 . . . . 5 (𝜑 → (Hom ‘𝑅) = ( RngHomo ↾ ((Base‘𝑅) × (Base‘𝑅))))
201, 5, 17, 19rnghmsubcsetc 44268 . . . 4 (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈)))
2112, 20funcres 17166 . . 3 (𝜑 → (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)) ∈ (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func 𝑆))
22 mptexg 6984 . . . . . 6 (𝑈 ∈ WUni → (𝑥𝑈 ↦ (Base‘𝑥)) ∈ V)
235, 22syl 17 . . . . 5 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥)) ∈ V)
24 fvex 6683 . . . . . 6 (Hom ‘𝑅) ∈ V
2524a1i 11 . . . . 5 (𝜑 → (Hom ‘𝑅) ∈ V)
26 mpoexga 7775 . . . . . 6 ((𝑈 ∈ WUni ∧ 𝑈 ∈ WUni) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) ∈ V)
275, 5, 26syl2anc 586 . . . . 5 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) ∈ V)
2815, 19rnghmresfn 44254 . . . . 5 (𝜑 → (Hom ‘𝑅) Fn ((Base‘𝑅) × (Base‘𝑅)))
2923, 25, 27, 28resfval2 17163 . . . 4 (𝜑 → (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)) = ⟨((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))⟩)
30 inss1 4205 . . . . . . . 8 (𝑈 ∩ Rng) ⊆ 𝑈
3115, 30eqsstrdi 4021 . . . . . . 7 (𝜑 → (Base‘𝑅) ⊆ 𝑈)
3231resmptd 5908 . . . . . 6 (𝜑 → ((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)) = (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)))
33 funcrngcsetc.f . . . . . . 7 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
34 funcrngcsetc.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3534a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑅))
3635mpteq1d 5155 . . . . . . 7 (𝜑 → (𝑥𝐵 ↦ (Base‘𝑥)) = (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)))
3733, 36eqtr2d 2857 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)) = 𝐹)
3832, 37eqtrd 2856 . . . . 5 (𝜑 → ((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)) = 𝐹)
39 funcrngcsetc.g . . . . . 6 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))
40 oveq1 7163 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 RngHomo 𝑦) = (𝑎 RngHomo 𝑦))
4140reseq2d 5853 . . . . . . . 8 (𝑥 = 𝑎 → ( I ↾ (𝑥 RngHomo 𝑦)) = ( I ↾ (𝑎 RngHomo 𝑦)))
42 oveq2 7164 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑎 RngHomo 𝑦) = (𝑎 RngHomo 𝑏))
4342reseq2d 5853 . . . . . . . 8 (𝑦 = 𝑏 → ( I ↾ (𝑎 RngHomo 𝑦)) = ( I ↾ (𝑎 RngHomo 𝑏)))
4441, 43cbvmpov 7249 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))) = (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RngHomo 𝑏)))
4544a1i 11 . . . . . 6 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))) = (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RngHomo 𝑏))))
4634a1i 11 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐵 = (Base‘𝑅))
47 eqidd 2822 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
48 fveq2 6670 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
49 fveq2 6670 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
5048, 49oveqan12rd 7176 . . . . . . . . . . . 12 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
5150reseq2d 5853 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))))
5251adantl 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))))
5334, 31eqsstrid 4015 . . . . . . . . . . . . . 14 (𝜑𝐵𝑈)
5453sseld 3966 . . . . . . . . . . . . 13 (𝜑 → (𝑎𝐵𝑎𝑈))
5554com12 32 . . . . . . . . . . . 12 (𝑎𝐵 → (𝜑𝑎𝑈))
5655adantr 483 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
5756impcom 410 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
5853sseld 3966 . . . . . . . . . . . 12 (𝜑 → (𝑏𝐵𝑏𝑈))
5958adantld 493 . . . . . . . . . . 11 (𝜑 → ((𝑎𝐵𝑏𝐵) → 𝑏𝑈))
6059imp 409 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
61 ovexd 7191 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
6261resiexd 6979 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ∈ V)
6347, 52, 57, 60, 62ovmpod 7302 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) = ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))))
6463reseq1d 5852 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)) = (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎(Hom ‘𝑅)𝑏)))
655adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
66 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
67 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
6813, 34, 65, 18, 66, 67rngchom 44258 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝑅)𝑏) = (𝑎 RngHomo 𝑏))
6968reseq2d 5853 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎(Hom ‘𝑅)𝑏)) = (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎 RngHomo 𝑏)))
70 eqid 2821 . . . . . . . . . . . 12 (Base‘𝑎) = (Base‘𝑎)
71 eqid 2821 . . . . . . . . . . . 12 (Base‘𝑏) = (Base‘𝑏)
7270, 71rnghmf 44190 . . . . . . . . . . 11 (𝑓 ∈ (𝑎 RngHomo 𝑏) → 𝑓:(Base‘𝑎)⟶(Base‘𝑏))
73 fvex 6683 . . . . . . . . . . . . . 14 (Base‘𝑏) ∈ V
74 fvex 6683 . . . . . . . . . . . . . 14 (Base‘𝑎) ∈ V
7573, 74pm3.2i 473 . . . . . . . . . . . . 13 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
7675a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V))
77 elmapg 8419 . . . . . . . . . . . 12 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → (𝑓 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ 𝑓:(Base‘𝑎)⟶(Base‘𝑏)))
7876, 77syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑓 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ 𝑓:(Base‘𝑎)⟶(Base‘𝑏)))
7972, 78syl5ibr 248 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑓 ∈ (𝑎 RngHomo 𝑏) → 𝑓 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
8079ssrdv 3973 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 RngHomo 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
8180resabs1d 5884 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎 RngHomo 𝑏)) = ( I ↾ (𝑎 RngHomo 𝑏)))
8264, 69, 813eqtrrd 2861 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( I ↾ (𝑎 RngHomo 𝑏)) = ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))
8335, 46, 82mpoeq123dva 7228 . . . . . 6 (𝜑 → (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RngHomo 𝑏))) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏))))
8439, 45, 833eqtrrd 2861 . . . . 5 (𝜑 → (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏))) = 𝐺)
8538, 84opeq12d 4811 . . . 4 (𝜑 → ⟨((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))⟩ = ⟨𝐹, 𝐺⟩)
8629, 85eqtr2d 2857 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ = (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)))
8713, 5, 15, 19rngcval 44253 . . . 4 (𝜑𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))
8887oveq1d 7171 . . 3 (𝜑 → (𝑅 Func 𝑆) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func 𝑆))
8921, 86, 883eltr4d 2928 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
90 df-br 5067 . 2 (𝐹(𝑅 Func 𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
9189, 90sylibr 236 1 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  cop 4573   class class class wbr 5066  cmpt 5146   I cid 5459  cres 5557  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  WUnicwun 10122  Basecbs 16483  Hom chom 16576  cat cresc 17078   Func cfunc 17124  f cresf 17127  SetCatcsetc 17335  ExtStrCatcestrc 17372  Rngcrng 44165   RngHomo crngh 44176  RngCatcrngc 44248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-wun 10124  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-hom 16589  df-cco 16590  df-0g 16715  df-cat 16939  df-cid 16940  df-homf 16941  df-ssc 17080  df-resc 17081  df-subc 17082  df-func 17128  df-resf 17131  df-setc 17336  df-estrc 17373  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-ghm 18356  df-abl 18909  df-mgp 19240  df-mgmhm 44066  df-rng0 44166  df-rnghomo 44178  df-rngc 44250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator