MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcrngcsetc Structured version   Visualization version   GIF version

Theorem funcrngcsetc 20550
Description: The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT 20551, using cofuval2 17789 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 20549, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 18050. (Contributed by AV, 26-Mar-2020.)
Hypotheses
Ref Expression
funcrngcsetc.r 𝑅 = (RngCat‘𝑈)
funcrngcsetc.s 𝑆 = (SetCat‘𝑈)
funcrngcsetc.b 𝐵 = (Base‘𝑅)
funcrngcsetc.u (𝜑𝑈 ∈ WUni)
funcrngcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcrngcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦))))
Assertion
Ref Expression
funcrngcsetc (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcrngcsetc
Dummy variables 𝑎 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
2 funcrngcsetc.s . . . . . 6 𝑆 = (SetCat‘𝑈)
3 eqid 2731 . . . . . 6 (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈))
4 eqid 2731 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
5 funcrngcsetc.u . . . . . 6 (𝜑𝑈 ∈ WUni)
61, 5estrcbas 18026 . . . . . . 7 (𝜑𝑈 = (Base‘(ExtStrCat‘𝑈)))
76mpteq1d 5176 . . . . . 6 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥)) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ (Base‘𝑥)))
8 mpoeq12 7414 . . . . . . 7 ((𝑈 = (Base‘(ExtStrCat‘𝑈)) ∧ 𝑈 = (Base‘(ExtStrCat‘𝑈))) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑦 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
96, 6, 8syl2anc 584 . . . . . 6 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑦 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
101, 2, 3, 4, 5, 7, 9funcestrcsetc 18050 . . . . 5 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥))((ExtStrCat‘𝑈) Func 𝑆)(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
11 df-br 5087 . . . . 5 ((𝑥𝑈 ↦ (Base‘𝑥))((ExtStrCat‘𝑈) Func 𝑆)(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) ↔ ⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
1210, 11sylib 218 . . . 4 (𝜑 → ⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
13 funcrngcsetc.r . . . . . . 7 𝑅 = (RngCat‘𝑈)
14 eqid 2731 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1513, 14, 5rngcbas 20531 . . . . . 6 (𝜑 → (Base‘𝑅) = (𝑈 ∩ Rng))
16 incom 4154 . . . . . 6 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
1715, 16eqtrdi 2782 . . . . 5 (𝜑 → (Base‘𝑅) = (Rng ∩ 𝑈))
18 eqid 2731 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
1913, 14, 5, 18rngchomfval 20532 . . . . 5 (𝜑 → (Hom ‘𝑅) = ( RngHom ↾ ((Base‘𝑅) × (Base‘𝑅))))
201, 5, 17, 19rnghmsubcsetc 20543 . . . 4 (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈)))
2112, 20funcres 17798 . . 3 (𝜑 → (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)) ∈ (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func 𝑆))
22 mptexg 7150 . . . . . 6 (𝑈 ∈ WUni → (𝑥𝑈 ↦ (Base‘𝑥)) ∈ V)
235, 22syl 17 . . . . 5 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥)) ∈ V)
24 fvex 6830 . . . . . 6 (Hom ‘𝑅) ∈ V
2524a1i 11 . . . . 5 (𝜑 → (Hom ‘𝑅) ∈ V)
26 mpoexga 8004 . . . . . 6 ((𝑈 ∈ WUni ∧ 𝑈 ∈ WUni) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) ∈ V)
275, 5, 26syl2anc 584 . . . . 5 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) ∈ V)
2815, 19rnghmresfn 20529 . . . . 5 (𝜑 → (Hom ‘𝑅) Fn ((Base‘𝑅) × (Base‘𝑅)))
2923, 25, 27, 28resfval2 17795 . . . 4 (𝜑 → (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)) = ⟨((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))⟩)
30 inss1 4182 . . . . . . . 8 (𝑈 ∩ Rng) ⊆ 𝑈
3115, 30eqsstrdi 3974 . . . . . . 7 (𝜑 → (Base‘𝑅) ⊆ 𝑈)
3231resmptd 5984 . . . . . 6 (𝜑 → ((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)) = (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)))
33 funcrngcsetc.f . . . . . . 7 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
34 funcrngcsetc.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3534a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑅))
3635mpteq1d 5176 . . . . . . 7 (𝜑 → (𝑥𝐵 ↦ (Base‘𝑥)) = (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)))
3733, 36eqtr2d 2767 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)) = 𝐹)
3832, 37eqtrd 2766 . . . . 5 (𝜑 → ((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)) = 𝐹)
39 funcrngcsetc.g . . . . . 6 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦))))
40 oveq1 7348 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 RngHom 𝑦) = (𝑎 RngHom 𝑦))
4140reseq2d 5923 . . . . . . . 8 (𝑥 = 𝑎 → ( I ↾ (𝑥 RngHom 𝑦)) = ( I ↾ (𝑎 RngHom 𝑦)))
42 oveq2 7349 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑎 RngHom 𝑦) = (𝑎 RngHom 𝑏))
4342reseq2d 5923 . . . . . . . 8 (𝑦 = 𝑏 → ( I ↾ (𝑎 RngHom 𝑦)) = ( I ↾ (𝑎 RngHom 𝑏)))
4441, 43cbvmpov 7436 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦))) = (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RngHom 𝑏)))
4544a1i 11 . . . . . 6 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦))) = (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RngHom 𝑏))))
4634a1i 11 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐵 = (Base‘𝑅))
47 eqidd 2732 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
48 fveq2 6817 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
49 fveq2 6817 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
5048, 49oveqan12rd 7361 . . . . . . . . . . . 12 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
5150reseq2d 5923 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))))
5251adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))))
5334, 31eqsstrid 3968 . . . . . . . . . . . . . 14 (𝜑𝐵𝑈)
5453sseld 3928 . . . . . . . . . . . . 13 (𝜑 → (𝑎𝐵𝑎𝑈))
5554com12 32 . . . . . . . . . . . 12 (𝑎𝐵 → (𝜑𝑎𝑈))
5655adantr 480 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
5756impcom 407 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
5853sseld 3928 . . . . . . . . . . . 12 (𝜑 → (𝑏𝐵𝑏𝑈))
5958adantld 490 . . . . . . . . . . 11 (𝜑 → ((𝑎𝐵𝑏𝐵) → 𝑏𝑈))
6059imp 406 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
61 ovexd 7376 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
6261resiexd 7145 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ∈ V)
6347, 52, 57, 60, 62ovmpod 7493 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) = ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))))
6463reseq1d 5922 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)) = (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎(Hom ‘𝑅)𝑏)))
655adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
66 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
67 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
6813, 34, 65, 18, 66, 67rngchom 20533 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝑅)𝑏) = (𝑎 RngHom 𝑏))
6968reseq2d 5923 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎(Hom ‘𝑅)𝑏)) = (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎 RngHom 𝑏)))
70 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑎) = (Base‘𝑎)
71 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑏) = (Base‘𝑏)
7270, 71rnghmf 20361 . . . . . . . . . . 11 (𝑓 ∈ (𝑎 RngHom 𝑏) → 𝑓:(Base‘𝑎)⟶(Base‘𝑏))
73 fvex 6830 . . . . . . . . . . . . . 14 (Base‘𝑏) ∈ V
74 fvex 6830 . . . . . . . . . . . . . 14 (Base‘𝑎) ∈ V
7573, 74pm3.2i 470 . . . . . . . . . . . . 13 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
7675a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V))
77 elmapg 8758 . . . . . . . . . . . 12 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → (𝑓 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ 𝑓:(Base‘𝑎)⟶(Base‘𝑏)))
7876, 77syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑓 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ 𝑓:(Base‘𝑎)⟶(Base‘𝑏)))
7972, 78imbitrrid 246 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑓 ∈ (𝑎 RngHom 𝑏) → 𝑓 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
8079ssrdv 3935 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 RngHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
8180resabs1d 5952 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎 RngHom 𝑏)) = ( I ↾ (𝑎 RngHom 𝑏)))
8264, 69, 813eqtrrd 2771 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( I ↾ (𝑎 RngHom 𝑏)) = ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))
8335, 46, 82mpoeq123dva 7415 . . . . . 6 (𝜑 → (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RngHom 𝑏))) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏))))
8439, 45, 833eqtrrd 2771 . . . . 5 (𝜑 → (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏))) = 𝐺)
8538, 84opeq12d 4828 . . . 4 (𝜑 → ⟨((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))⟩ = ⟨𝐹, 𝐺⟩)
8629, 85eqtr2d 2767 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ = (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)))
8713, 5, 15, 19rngcval 20528 . . . 4 (𝜑𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))
8887oveq1d 7356 . . 3 (𝜑 → (𝑅 Func 𝑆) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func 𝑆))
8921, 86, 883eltr4d 2846 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
90 df-br 5087 . 2 (𝐹(𝑅 Func 𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
9189, 90sylibr 234 1 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  cop 4577   class class class wbr 5086  cmpt 5167   I cid 5505  cres 5613  wf 6472  cfv 6476  (class class class)co 7341  cmpo 7343  m cmap 8745  WUnicwun 10586  Basecbs 17115  Hom chom 17167  cat cresc 17710   Func cfunc 17756  f cresf 17759  SetCatcsetc 17977  ExtStrCatcestrc 18023  Rngcrng 20065   RngHom crnghm 20347  RngCatcrngc 20526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-wun 10588  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-hom 17180  df-cco 17181  df-0g 17340  df-cat 17569  df-cid 17570  df-homf 17571  df-ssc 17712  df-resc 17713  df-subc 17714  df-func 17760  df-resf 17763  df-setc 17978  df-estrc 18024  df-mgm 18543  df-mgmhm 18595  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-ghm 19120  df-abl 19690  df-mgp 20054  df-rng 20066  df-rnghm 20349  df-rngc 20527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator