MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfpropd Structured version   Visualization version   GIF version

Theorem curfpropd 18186
Description: If two categories have the same set of objects, morphisms, and compositions, then they curry the same functor to the same result. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
curfpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
curfpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
curfpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
curfpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
curfpropd.a (𝜑𝐴 ∈ Cat)
curfpropd.b (𝜑𝐵 ∈ Cat)
curfpropd.c (𝜑𝐶 ∈ Cat)
curfpropd.d (𝜑𝐷 ∈ Cat)
curfpropd.f (𝜑𝐹 ∈ ((𝐴 ×c 𝐶) Func 𝐸))
Assertion
Ref Expression
curfpropd (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹))

Proof of Theorem curfpropd
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
21homfeqbas 17640 . . . 4 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
3 curfpropd.3 . . . . . . . 8 (𝜑 → (Homf𝐶) = (Homf𝐷))
43homfeqbas 17640 . . . . . . 7 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
54adantr 482 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐴)) → (Base‘𝐶) = (Base‘𝐷))
65mpteq1d 5244 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐴)) → (𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)))
75adantr 482 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
8 eqid 2733 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2733 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2733 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
113ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (Homf𝐶) = (Homf𝐷))
12 simprl 770 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
13 simprr 772 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶))
148, 9, 10, 11, 12, 13homfeqval 17641 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐷)𝑧))
15 curfpropd.2 . . . . . . . . . . 11 (𝜑 → (compf𝐴) = (compf𝐵))
16 curfpropd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Cat)
17 curfpropd.b . . . . . . . . . . 11 (𝜑𝐵 ∈ Cat)
181, 15, 16, 17cidpropd 17654 . . . . . . . . . 10 (𝜑 → (Id‘𝐴) = (Id‘𝐵))
1918ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (Id‘𝐴) = (Id‘𝐵))
2019fveq1d 6894 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ((Id‘𝐴)‘𝑥) = ((Id‘𝐵)‘𝑥))
2120oveq1d 7424 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))
2214, 21mpteq12dv 5240 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))
235, 7, 22mpoeq123dva 7483 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐴)) → (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))))
246, 23opeq12d 4882 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐴)) → ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)
252, 24mpteq12dva 5238 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
262adantr 482 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
27 eqid 2733 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
28 eqid 2733 . . . . . 6 (Hom ‘𝐴) = (Hom ‘𝐴)
29 eqid 2733 . . . . . 6 (Hom ‘𝐵) = (Hom ‘𝐵)
301adantr 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (Homf𝐴) = (Homf𝐵))
31 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝐴))
32 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
3327, 28, 29, 30, 31, 32homfeqval 17641 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
344ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Base‘𝐶) = (Base‘𝐷))
35 curfpropd.4 . . . . . . . . . 10 (𝜑 → (compf𝐶) = (compf𝐷))
36 curfpropd.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
37 curfpropd.d . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
383, 35, 36, 37cidpropd 17654 . . . . . . . . 9 (𝜑 → (Id‘𝐶) = (Id‘𝐷))
3938ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → (Id‘𝐶) = (Id‘𝐷))
4039fveq1d 6894 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑧) = ((Id‘𝐷)‘𝑧))
4140oveq2d 7425 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)) = (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))
4234, 41mpteq12dva 5238 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))
4333, 42mpteq12dva 5238 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))) = (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
442, 26, 43mpoeq123dva 7483 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧))))) = (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
4525, 44opeq12d 4882 . 2 (𝜑 → ⟨(𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))))⟩ = ⟨(𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
46 eqid 2733 . . 3 (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐴, 𝐶⟩ curryF 𝐹)
47 curfpropd.f . . 3 (𝜑𝐹 ∈ ((𝐴 ×c 𝐶) Func 𝐸))
48 eqid 2733 . . 3 (Id‘𝐴) = (Id‘𝐴)
49 eqid 2733 . . 3 (Id‘𝐶) = (Id‘𝐶)
5046, 27, 16, 36, 47, 8, 9, 48, 28, 49curfval 18176 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))))⟩)
51 eqid 2733 . . 3 (⟨𝐵, 𝐷⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹)
52 eqid 2733 . . 3 (Base‘𝐵) = (Base‘𝐵)
531, 15, 3, 35, 16, 17, 36, 37xpcpropd 18161 . . . . 5 (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷))
5453oveq1d 7424 . . . 4 (𝜑 → ((𝐴 ×c 𝐶) Func 𝐸) = ((𝐵 ×c 𝐷) Func 𝐸))
5547, 54eleqtrd 2836 . . 3 (𝜑𝐹 ∈ ((𝐵 ×c 𝐷) Func 𝐸))
56 eqid 2733 . . 3 (Base‘𝐷) = (Base‘𝐷)
57 eqid 2733 . . 3 (Id‘𝐵) = (Id‘𝐵)
58 eqid 2733 . . 3 (Id‘𝐷) = (Id‘𝐷)
5951, 52, 17, 37, 55, 56, 10, 57, 29, 58curfval 18176 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
6045, 50, 593eqtr4d 2783 1 (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cop 4635  cmpt 5232  cfv 6544  (class class class)co 7409  cmpo 7411  1st c1st 7973  2nd c2nd 7974  Basecbs 17144  Hom chom 17208  Catccat 17608  Idccid 17609  Homf chomf 17610  compfccomf 17611   Func cfunc 17804   ×c cxpc 18120   curryF ccurf 18163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-slot 17115  df-ndx 17127  df-base 17145  df-hom 17221  df-cco 17222  df-cat 17612  df-cid 17613  df-homf 17614  df-comf 17615  df-xpc 18124  df-curf 18167
This theorem is referenced by:  yonpropd  18221  oppcyon  18222
  Copyright terms: Public domain W3C validator