MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfpropd Structured version   Visualization version   GIF version

Theorem curfpropd 18250
Description: If two categories have the same set of objects, morphisms, and compositions, then they curry the same functor to the same result. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
curfpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
curfpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
curfpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
curfpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
curfpropd.a (𝜑𝐴 ∈ Cat)
curfpropd.b (𝜑𝐵 ∈ Cat)
curfpropd.c (𝜑𝐶 ∈ Cat)
curfpropd.d (𝜑𝐷 ∈ Cat)
curfpropd.f (𝜑𝐹 ∈ ((𝐴 ×c 𝐶) Func 𝐸))
Assertion
Ref Expression
curfpropd (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹))

Proof of Theorem curfpropd
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
21homfeqbas 17713 . . . 4 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
3 curfpropd.3 . . . . . . . 8 (𝜑 → (Homf𝐶) = (Homf𝐷))
43homfeqbas 17713 . . . . . . 7 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
54adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐴)) → (Base‘𝐶) = (Base‘𝐷))
65mpteq1d 5215 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐴)) → (𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)))
75adantr 480 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
8 eqid 2736 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2736 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2736 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
113ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (Homf𝐶) = (Homf𝐷))
12 simprl 770 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
13 simprr 772 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶))
148, 9, 10, 11, 12, 13homfeqval 17714 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐷)𝑧))
15 curfpropd.2 . . . . . . . . . . 11 (𝜑 → (compf𝐴) = (compf𝐵))
16 curfpropd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Cat)
17 curfpropd.b . . . . . . . . . . 11 (𝜑𝐵 ∈ Cat)
181, 15, 16, 17cidpropd 17727 . . . . . . . . . 10 (𝜑 → (Id‘𝐴) = (Id‘𝐵))
1918ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (Id‘𝐴) = (Id‘𝐵))
2019fveq1d 6883 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ((Id‘𝐴)‘𝑥) = ((Id‘𝐵)‘𝑥))
2120oveq1d 7425 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))
2214, 21mpteq12dv 5212 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))
235, 7, 22mpoeq123dva 7486 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐴)) → (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))))
246, 23opeq12d 4862 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐴)) → ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)
252, 24mpteq12dva 5211 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
262adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
27 eqid 2736 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
28 eqid 2736 . . . . . 6 (Hom ‘𝐴) = (Hom ‘𝐴)
29 eqid 2736 . . . . . 6 (Hom ‘𝐵) = (Hom ‘𝐵)
301adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (Homf𝐴) = (Homf𝐵))
31 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝐴))
32 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
3327, 28, 29, 30, 31, 32homfeqval 17714 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
344ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Base‘𝐶) = (Base‘𝐷))
35 curfpropd.4 . . . . . . . . . 10 (𝜑 → (compf𝐶) = (compf𝐷))
36 curfpropd.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
37 curfpropd.d . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
383, 35, 36, 37cidpropd 17727 . . . . . . . . 9 (𝜑 → (Id‘𝐶) = (Id‘𝐷))
3938ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → (Id‘𝐶) = (Id‘𝐷))
4039fveq1d 6883 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑧) = ((Id‘𝐷)‘𝑧))
4140oveq2d 7426 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)) = (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))
4234, 41mpteq12dva 5211 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))
4333, 42mpteq12dva 5211 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))) = (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
442, 26, 43mpoeq123dva 7486 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧))))) = (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
4525, 44opeq12d 4862 . 2 (𝜑 → ⟨(𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))))⟩ = ⟨(𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
46 eqid 2736 . . 3 (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐴, 𝐶⟩ curryF 𝐹)
47 curfpropd.f . . 3 (𝜑𝐹 ∈ ((𝐴 ×c 𝐶) Func 𝐸))
48 eqid 2736 . . 3 (Id‘𝐴) = (Id‘𝐴)
49 eqid 2736 . . 3 (Id‘𝐶) = (Id‘𝐶)
5046, 27, 16, 36, 47, 8, 9, 48, 28, 49curfval 18240 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))))⟩)
51 eqid 2736 . . 3 (⟨𝐵, 𝐷⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹)
52 eqid 2736 . . 3 (Base‘𝐵) = (Base‘𝐵)
531, 15, 3, 35, 16, 17, 36, 37xpcpropd 18225 . . . . 5 (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷))
5453oveq1d 7425 . . . 4 (𝜑 → ((𝐴 ×c 𝐶) Func 𝐸) = ((𝐵 ×c 𝐷) Func 𝐸))
5547, 54eleqtrd 2837 . . 3 (𝜑𝐹 ∈ ((𝐵 ×c 𝐷) Func 𝐸))
56 eqid 2736 . . 3 (Base‘𝐷) = (Base‘𝐷)
57 eqid 2736 . . 3 (Id‘𝐵) = (Id‘𝐵)
58 eqid 2736 . . 3 (Id‘𝐷) = (Id‘𝐷)
5951, 52, 17, 37, 55, 56, 10, 57, 29, 58curfval 18240 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
6045, 50, 593eqtr4d 2781 1 (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4612  cmpt 5206  cfv 6536  (class class class)co 7410  cmpo 7412  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  Catccat 17681  Idccid 17682  Homf chomf 17683  compfccomf 17684   Func cfunc 17872   ×c cxpc 18185   curryF ccurf 18227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-cat 17685  df-cid 17686  df-homf 17687  df-comf 17688  df-xpc 18189  df-curf 18231
This theorem is referenced by:  yonpropd  18285  oppcyon  18286
  Copyright terms: Public domain W3C validator