MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdsfi Structured version   Visualization version   GIF version

Theorem rrxdsfi 25459
Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrxdsfi.h 𝐻 = (ℝ^‘𝐼)
rrxdsfi.b 𝐵 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrxdsfi (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Distinct variable groups:   𝐵,𝑘   𝑓,𝐻,𝑔,𝑘   𝑓,𝐼,𝑔,𝑘
Allowed substitution hints:   𝐵(𝑓,𝑔)

Proof of Theorem rrxdsfi
StepHypRef Expression
1 rrxdsfi.b . . . 4 𝐵 = (ℝ ↑m 𝐼)
2 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
3 rrxdsfi.h . . . . 5 𝐻 = (ℝ^‘𝐼)
4 eqid 2735 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
52, 3, 4rrxbasefi 25458 . . . 4 (𝐼 ∈ Fin → (Base‘𝐻) = (ℝ ↑m 𝐼))
61, 5eqtr4id 2794 . . 3 (𝐼 ∈ Fin → 𝐵 = (Base‘𝐻))
76adantr 480 . . 3 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝐵 = (Base‘𝐻))
8 df-refld 21641 . . . . . . 7 fld = (ℂflds ℝ)
98oveq1i 7441 . . . . . 6 (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = ((ℂflds ℝ) Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))
10 simp1 1135 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝐼 ∈ Fin)
11 simpr 484 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝑓𝐵)
1211, 1eleqtrdi 2849 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
13123adant3 1131 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
14 elmapi 8888 . . . . . . . . . . 11 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
1513, 14syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑓:𝐼⟶ℝ)
1615ffvelcdmda 7104 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (𝑓𝑘) ∈ ℝ)
17 simpr 484 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑔𝐵) → 𝑔𝐵)
1817, 1eleqtrdi 2849 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑔𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼))
19183adant2 1130 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼))
20 elmapi 8888 . . . . . . . . . . 11 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
2119, 20syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑔:𝐼⟶ℝ)
2221ffvelcdmda 7104 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ ℝ)
2316, 22resubcld 11689 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → ((𝑓𝑘) − (𝑔𝑘)) ∈ ℝ)
2423resqcld 14162 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (((𝑓𝑘) − (𝑔𝑘))↑2) ∈ ℝ)
2510, 24regsumfsum 21471 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → ((ℂflds ℝ) Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
269, 25eqtr2id 2788 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2) = (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))
2726fveq2d 6911 . . . 4 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))))
28273expb 1119 . . 3 ((𝐼 ∈ Fin ∧ (𝑓𝐵𝑔𝐵)) → (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))))
296, 7, 28mpoeq123dva 7507 . 2 (𝐼 ∈ Fin → (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))))
303, 4rrxds 25441 . 2 (𝐼 ∈ Fin → (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))) = (dist‘𝐻))
3129, 30eqtr2d 2776 1 (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Fincfn 8984  cr 11152  cmin 11490  2c2 12319  cexp 14099  csqrt 15269  Σcsu 15719  Basecbs 17245  s cress 17274  distcds 17307   Σg cgsu 17487  fldccnfld 21382  fldcrefld 21640  ℝ^crrx 25431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-nm 24611  df-tng 24613  df-tcph 25217  df-rrx 25433
This theorem is referenced by:  rrxdsfival  25461  ehleudis  25466  rrndistlt  46246  qndenserrnopnlem  46253  rrndsmet  46258  ioorrnopnlem  46260  hoiqssbllem2  46579
  Copyright terms: Public domain W3C validator