![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxdsfi | Structured version Visualization version GIF version |
Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rrxdsfi.h | ⊢ 𝐻 = (ℝ^‘𝐼) |
rrxdsfi.b | ⊢ 𝐵 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
rrxdsfi | ⊢ (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxdsfi.b | . . . 4 ⊢ 𝐵 = (ℝ ↑m 𝐼) | |
2 | id 22 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
3 | rrxdsfi.h | . . . . 5 ⊢ 𝐻 = (ℝ^‘𝐼) | |
4 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
5 | 2, 3, 4 | rrxbasefi 24909 | . . . 4 ⊢ (𝐼 ∈ Fin → (Base‘𝐻) = (ℝ ↑m 𝐼)) |
6 | 1, 5 | eqtr4id 2792 | . . 3 ⊢ (𝐼 ∈ Fin → 𝐵 = (Base‘𝐻)) |
7 | 6 | adantr 482 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵) → 𝐵 = (Base‘𝐻)) |
8 | df-refld 21142 | . . . . . . 7 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
9 | 8 | oveq1i 7414 | . . . . . 6 ⊢ (ℝfld Σg (𝑘 ∈ 𝐼 ↦ (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) = ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐼 ↦ (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) |
10 | simp1 1137 | . . . . . . 7 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝐼 ∈ Fin) | |
11 | simpr 486 | . . . . . . . . . . . . 13 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵) → 𝑓 ∈ 𝐵) | |
12 | 11, 1 | eleqtrdi 2844 | . . . . . . . . . . . 12 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼)) |
13 | 12 | 3adant3 1133 | . . . . . . . . . . 11 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼)) |
14 | elmapi 8839 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ) | |
15 | 13, 14 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑓:𝐼⟶ℝ) |
16 | 15 | ffvelcdmda 7082 | . . . . . . . . 9 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑘) ∈ ℝ) |
17 | simpr 486 | . . . . . . . . . . . . 13 ⊢ ((𝐼 ∈ Fin ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ 𝐵) | |
18 | 17, 1 | eleqtrdi 2844 | . . . . . . . . . . . 12 ⊢ ((𝐼 ∈ Fin ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼)) |
19 | 18 | 3adant2 1132 | . . . . . . . . . . 11 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼)) |
20 | elmapi 8839 | . . . . . . . . . . 11 ⊢ (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ) | |
21 | 19, 20 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑔:𝐼⟶ℝ) |
22 | 21 | ffvelcdmda 7082 | . . . . . . . . 9 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑘 ∈ 𝐼) → (𝑔‘𝑘) ∈ ℝ) |
23 | 16, 22 | resubcld 11638 | . . . . . . . 8 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑘 ∈ 𝐼) → ((𝑓‘𝑘) − (𝑔‘𝑘)) ∈ ℝ) |
24 | 23 | resqcld 14086 | . . . . . . 7 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑘 ∈ 𝐼) → (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) ∈ ℝ) |
25 | 10, 24 | regsumfsum 20998 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐼 ↦ (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) = Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) |
26 | 9, 25 | eqtr2id 2786 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) = (ℝfld Σg (𝑘 ∈ 𝐼 ↦ (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
27 | 26 | fveq2d 6892 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) = (√‘(ℝfld Σg (𝑘 ∈ 𝐼 ↦ (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))))) |
28 | 27 | 3expb 1121 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) = (√‘(ℝfld Σg (𝑘 ∈ 𝐼 ↦ (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))))) |
29 | 6, 7, 28 | mpoeq123dva 7478 | . 2 ⊢ (𝐼 ∈ Fin → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) = (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘 ∈ 𝐼 ↦ (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))))) |
30 | 3, 4 | rrxds 24892 | . 2 ⊢ (𝐼 ∈ Fin → (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘 ∈ 𝐼 ↦ (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))))) = (dist‘𝐻)) |
31 | 29, 30 | eqtr2d 2774 | 1 ⊢ (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5230 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ∈ cmpo 7406 ↑m cmap 8816 Fincfn 8935 ℝcr 11105 − cmin 11440 2c2 12263 ↑cexp 14023 √csqrt 15176 Σcsu 15628 Basecbs 17140 ↾s cress 17169 distcds 17202 Σg cgsu 17382 ℂfldccnfld 20929 ℝfldcrefld 21141 ℝ^crrx 24882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-cring 20050 df-oppr 20139 df-dvdsr 20160 df-unit 20161 df-invr 20191 df-dvr 20204 df-rnghom 20240 df-drng 20306 df-field 20307 df-subrg 20349 df-staf 20441 df-srng 20442 df-lmod 20461 df-lss 20531 df-sra 20773 df-rgmod 20774 df-cnfld 20930 df-refld 21142 df-dsmm 21271 df-frlm 21286 df-nm 24073 df-tng 24075 df-tcph 24668 df-rrx 24884 |
This theorem is referenced by: rrxdsfival 24912 ehleudis 24917 rrndistlt 44941 qndenserrnopnlem 44948 rrndsmet 44953 ioorrnopnlem 44955 hoiqssbllem2 45274 |
Copyright terms: Public domain | W3C validator |