MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdsfi Structured version   Visualization version   GIF version

Theorem rrxdsfi 24575
Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrxdsfi.h 𝐻 = (ℝ^‘𝐼)
rrxdsfi.b 𝐵 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrxdsfi (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Distinct variable groups:   𝐵,𝑘   𝑓,𝐻,𝑔,𝑘   𝑓,𝐼,𝑔,𝑘
Allowed substitution hints:   𝐵(𝑓,𝑔)

Proof of Theorem rrxdsfi
StepHypRef Expression
1 rrxdsfi.b . . . 4 𝐵 = (ℝ ↑m 𝐼)
2 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
3 rrxdsfi.h . . . . 5 𝐻 = (ℝ^‘𝐼)
4 eqid 2738 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
52, 3, 4rrxbasefi 24574 . . . 4 (𝐼 ∈ Fin → (Base‘𝐻) = (ℝ ↑m 𝐼))
61, 5eqtr4id 2797 . . 3 (𝐼 ∈ Fin → 𝐵 = (Base‘𝐻))
76adantr 481 . . 3 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝐵 = (Base‘𝐻))
8 df-refld 20810 . . . . . . 7 fld = (ℂflds ℝ)
98oveq1i 7285 . . . . . 6 (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = ((ℂflds ℝ) Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))
10 simp1 1135 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝐼 ∈ Fin)
11 simpr 485 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝑓𝐵)
1211, 1eleqtrdi 2849 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
13123adant3 1131 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
14 elmapi 8637 . . . . . . . . . . 11 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
1513, 14syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑓:𝐼⟶ℝ)
1615ffvelrnda 6961 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (𝑓𝑘) ∈ ℝ)
17 simpr 485 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑔𝐵) → 𝑔𝐵)
1817, 1eleqtrdi 2849 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑔𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼))
19183adant2 1130 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼))
20 elmapi 8637 . . . . . . . . . . 11 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
2119, 20syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑔:𝐼⟶ℝ)
2221ffvelrnda 6961 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ ℝ)
2316, 22resubcld 11403 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → ((𝑓𝑘) − (𝑔𝑘)) ∈ ℝ)
2423resqcld 13965 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (((𝑓𝑘) − (𝑔𝑘))↑2) ∈ ℝ)
2510, 24regsumfsum 20666 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → ((ℂflds ℝ) Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
269, 25eqtr2id 2791 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2) = (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))
2726fveq2d 6778 . . . 4 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))))
28273expb 1119 . . 3 ((𝐼 ∈ Fin ∧ (𝑓𝐵𝑔𝐵)) → (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))))
296, 7, 28mpoeq123dva 7349 . 2 (𝐼 ∈ Fin → (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))))
303, 4rrxds 24557 . 2 (𝐼 ∈ Fin → (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))) = (dist‘𝐻))
3129, 30eqtr2d 2779 1 (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Fincfn 8733  cr 10870  cmin 11205  2c2 12028  cexp 13782  csqrt 14944  Σcsu 15397  Basecbs 16912  s cress 16941  distcds 16971   Σg cgsu 17151  fldccnfld 20597  fldcrefld 20809  ℝ^crrx 24547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-staf 20105  df-srng 20106  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-refld 20810  df-dsmm 20939  df-frlm 20954  df-nm 23738  df-tng 23740  df-tcph 24333  df-rrx 24549
This theorem is referenced by:  rrxdsfival  24577  ehleudis  24582  rrndistlt  43831  qndenserrnopnlem  43838  rrndsmet  43843  ioorrnopnlem  43845  hoiqssbllem2  44161
  Copyright terms: Public domain W3C validator