MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdsfi Structured version   Visualization version   GIF version

Theorem rrxdsfi 24262
Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrxdsfi.h 𝐻 = (ℝ^‘𝐼)
rrxdsfi.b 𝐵 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrxdsfi (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Distinct variable groups:   𝐵,𝑘   𝑓,𝐻,𝑔,𝑘   𝑓,𝐼,𝑔,𝑘
Allowed substitution hints:   𝐵(𝑓,𝑔)

Proof of Theorem rrxdsfi
StepHypRef Expression
1 rrxdsfi.b . . . 4 𝐵 = (ℝ ↑m 𝐼)
2 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
3 rrxdsfi.h . . . . 5 𝐻 = (ℝ^‘𝐼)
4 eqid 2736 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
52, 3, 4rrxbasefi 24261 . . . 4 (𝐼 ∈ Fin → (Base‘𝐻) = (ℝ ↑m 𝐼))
61, 5eqtr4id 2790 . . 3 (𝐼 ∈ Fin → 𝐵 = (Base‘𝐻))
76adantr 484 . . 3 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝐵 = (Base‘𝐻))
8 df-refld 20521 . . . . . . 7 fld = (ℂflds ℝ)
98oveq1i 7201 . . . . . 6 (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = ((ℂflds ℝ) Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))
10 simp1 1138 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝐼 ∈ Fin)
11 simpr 488 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝑓𝐵)
1211, 1eleqtrdi 2841 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
13123adant3 1134 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
14 elmapi 8508 . . . . . . . . . . 11 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
1513, 14syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑓:𝐼⟶ℝ)
1615ffvelrnda 6882 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (𝑓𝑘) ∈ ℝ)
17 simpr 488 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑔𝐵) → 𝑔𝐵)
1817, 1eleqtrdi 2841 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑔𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼))
19183adant2 1133 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼))
20 elmapi 8508 . . . . . . . . . . 11 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
2119, 20syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑔:𝐼⟶ℝ)
2221ffvelrnda 6882 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ ℝ)
2316, 22resubcld 11225 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → ((𝑓𝑘) − (𝑔𝑘)) ∈ ℝ)
2423resqcld 13782 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (((𝑓𝑘) − (𝑔𝑘))↑2) ∈ ℝ)
2510, 24regsumfsum 20385 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → ((ℂflds ℝ) Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
269, 25eqtr2id 2784 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2) = (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))
2726fveq2d 6699 . . . 4 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))))
28273expb 1122 . . 3 ((𝐼 ∈ Fin ∧ (𝑓𝐵𝑔𝐵)) → (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))))
296, 7, 28mpoeq123dva 7263 . 2 (𝐼 ∈ Fin → (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))))
303, 4rrxds 24244 . 2 (𝐼 ∈ Fin → (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))) = (dist‘𝐻))
3129, 30eqtr2d 2772 1 (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  cmpt 5120  wf 6354  cfv 6358  (class class class)co 7191  cmpo 7193  m cmap 8486  Fincfn 8604  cr 10693  cmin 11027  2c2 11850  cexp 13600  csqrt 14761  Σcsu 15214  Basecbs 16666  s cress 16667  distcds 16758   Σg cgsu 16899  fldccnfld 20317  fldcrefld 20520  ℝ^crrx 24234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-sup 9036  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-0g 16900  df-gsum 16901  df-prds 16906  df-pws 16908  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-ghm 18574  df-cntz 18665  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-dvr 19655  df-rnghom 19689  df-drng 19723  df-field 19724  df-subrg 19752  df-staf 19835  df-srng 19836  df-lmod 19855  df-lss 19923  df-sra 20163  df-rgmod 20164  df-cnfld 20318  df-refld 20521  df-dsmm 20648  df-frlm 20663  df-nm 23434  df-tng 23436  df-tcph 24020  df-rrx 24236
This theorem is referenced by:  rrxdsfival  24264  ehleudis  24269  rrndistlt  43449  qndenserrnopnlem  43456  rrndsmet  43461  ioorrnopnlem  43463  hoiqssbllem2  43779
  Copyright terms: Public domain W3C validator