Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxdsfi Structured version   Visualization version   GIF version

Theorem rrxdsfi 41022
Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrxdsfi.h 𝐻 = (ℝ^‘𝐼)
rrxdsfi.b 𝐵 = (ℝ ↑𝑚 𝐼)
Assertion
Ref Expression
rrxdsfi (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Distinct variable groups:   𝐵,𝑘   𝑓,𝐻,𝑔,𝑘   𝑓,𝐼,𝑔,𝑘
Allowed substitution hints:   𝐵(𝑓,𝑔)

Proof of Theorem rrxdsfi
StepHypRef Expression
1 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
2 rrxdsfi.h . . . . 5 𝐻 = (ℝ^‘𝐼)
3 eqid 2771 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
41, 2, 3rrxbasefi 41020 . . . 4 (𝐼 ∈ Fin → (Base‘𝐻) = (ℝ ↑𝑚 𝐼))
5 rrxdsfi.b . . . . . 6 𝐵 = (ℝ ↑𝑚 𝐼)
65eqcomi 2780 . . . . 5 (ℝ ↑𝑚 𝐼) = 𝐵
76a1i 11 . . . 4 (𝐼 ∈ Fin → (ℝ ↑𝑚 𝐼) = 𝐵)
84, 7eqtr2d 2806 . . 3 (𝐼 ∈ Fin → 𝐵 = (Base‘𝐻))
98adantr 466 . . 3 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝐵 = (Base‘𝐻))
10 df-refld 20168 . . . . . . . . 9 fld = (ℂflds ℝ)
1110oveq1i 6803 . . . . . . . 8 (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = ((ℂflds ℝ) Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))
1211a1i 11 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = ((ℂflds ℝ) Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))
13 simp1 1130 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝐼 ∈ Fin)
14 simpr 471 . . . . . . . . . . . . . 14 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝑓𝐵)
155a1i 11 . . . . . . . . . . . . . 14 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝐵 = (ℝ ↑𝑚 𝐼))
1614, 15eleqtrd 2852 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑓𝐵) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
17163adant3 1126 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
18 elmapi 8031 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑𝑚 𝐼) → 𝑓:𝐼⟶ℝ)
1917, 18syl 17 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑓:𝐼⟶ℝ)
2019ffvelrnda 6502 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (𝑓𝑘) ∈ ℝ)
21 simpr 471 . . . . . . . . . . . . . 14 ((𝐼 ∈ Fin ∧ 𝑔𝐵) → 𝑔𝐵)
225a1i 11 . . . . . . . . . . . . . 14 ((𝐼 ∈ Fin ∧ 𝑔𝐵) → 𝐵 = (ℝ ↑𝑚 𝐼))
2321, 22eleqtrd 2852 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑔𝐵) → 𝑔 ∈ (ℝ ↑𝑚 𝐼))
24233adant2 1125 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑔 ∈ (ℝ ↑𝑚 𝐼))
25 elmapi 8031 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑𝑚 𝐼) → 𝑔:𝐼⟶ℝ)
2624, 25syl 17 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → 𝑔:𝐼⟶ℝ)
2726ffvelrnda 6502 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ ℝ)
2820, 27resubcld 10660 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → ((𝑓𝑘) − (𝑔𝑘)) ∈ ℝ)
2928resqcld 13242 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) ∧ 𝑘𝐼) → (((𝑓𝑘) − (𝑔𝑘))↑2) ∈ ℝ)
3013, 29regsumfsum 20029 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → ((ℂflds ℝ) Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
3112, 30eqtrd 2805 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
3231eqcomd 2777 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2) = (ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))
3332fveq2d 6336 . . . 4 ((𝐼 ∈ Fin ∧ 𝑓𝐵𝑔𝐵) → (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))))
34333expb 1113 . . 3 ((𝐼 ∈ Fin ∧ (𝑓𝐵𝑔𝐵)) → (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2)))))
358, 9, 34mpt2eq123dva 6863 . 2 (𝐼 ∈ Fin → (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))))
362, 3rrxds 23400 . 2 (𝐼 ∈ Fin → (𝑓 ∈ (Base‘𝐻), 𝑔 ∈ (Base‘𝐻) ↦ (√‘(ℝfld Σg (𝑘𝐼 ↦ (((𝑓𝑘) − (𝑔𝑘))↑2))))) = (dist‘𝐻))
3735, 36eqtr2d 2806 1 (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cmpt 4863  wf 6027  cfv 6031  (class class class)co 6793  cmpt2 6795  𝑚 cmap 8009  Fincfn 8109  cr 10137  cmin 10468  2c2 11272  cexp 13067  csqrt 14181  Σcsu 14624  Basecbs 16064  s cress 16065  distcds 16158   Σg cgsu 16309  fldccnfld 19961  fldcrefld 20167  ℝ^crrx 23390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-0g 16310  df-gsum 16311  df-prds 16316  df-pws 16318  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925  df-drng 18959  df-field 18960  df-subrg 18988  df-staf 19055  df-srng 19056  df-lmod 19075  df-lss 19143  df-sra 19387  df-rgmod 19388  df-cnfld 19962  df-refld 20168  df-dsmm 20293  df-frlm 20308  df-nm 22607  df-tng 22609  df-tch 23188  df-rrx 23392
This theorem is referenced by:  rrndistlt  41027  qndenserrnopnlem  41034  rrndsmet  41039  ioorrnopnlem  41041  hoiqssbllem2  41357
  Copyright terms: Public domain W3C validator