![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxdsfi | Structured version Visualization version GIF version |
Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rrxdsfi.h | β’ π» = (β^βπΌ) |
rrxdsfi.b | β’ π΅ = (β βm πΌ) |
Ref | Expression |
---|---|
rrxdsfi | β’ (πΌ β Fin β (distβπ») = (π β π΅, π β π΅ β¦ (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxdsfi.b | . . . 4 β’ π΅ = (β βm πΌ) | |
2 | id 22 | . . . . 5 β’ (πΌ β Fin β πΌ β Fin) | |
3 | rrxdsfi.h | . . . . 5 β’ π» = (β^βπΌ) | |
4 | eqid 2726 | . . . . 5 β’ (Baseβπ») = (Baseβπ») | |
5 | 2, 3, 4 | rrxbasefi 25293 | . . . 4 β’ (πΌ β Fin β (Baseβπ») = (β βm πΌ)) |
6 | 1, 5 | eqtr4id 2785 | . . 3 β’ (πΌ β Fin β π΅ = (Baseβπ»)) |
7 | 6 | adantr 480 | . . 3 β’ ((πΌ β Fin β§ π β π΅) β π΅ = (Baseβπ»)) |
8 | df-refld 21498 | . . . . . . 7 β’ βfld = (βfld βΎs β) | |
9 | 8 | oveq1i 7415 | . . . . . 6 β’ (βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))) = ((βfld βΎs β) Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))) |
10 | simp1 1133 | . . . . . . 7 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β πΌ β Fin) | |
11 | simpr 484 | . . . . . . . . . . . . 13 β’ ((πΌ β Fin β§ π β π΅) β π β π΅) | |
12 | 11, 1 | eleqtrdi 2837 | . . . . . . . . . . . 12 β’ ((πΌ β Fin β§ π β π΅) β π β (β βm πΌ)) |
13 | 12 | 3adant3 1129 | . . . . . . . . . . 11 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β π β (β βm πΌ)) |
14 | elmapi 8845 | . . . . . . . . . . 11 β’ (π β (β βm πΌ) β π:πΌβΆβ) | |
15 | 13, 14 | syl 17 | . . . . . . . . . 10 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β π:πΌβΆβ) |
16 | 15 | ffvelcdmda 7080 | . . . . . . . . 9 β’ (((πΌ β Fin β§ π β π΅ β§ π β π΅) β§ π β πΌ) β (πβπ) β β) |
17 | simpr 484 | . . . . . . . . . . . . 13 β’ ((πΌ β Fin β§ π β π΅) β π β π΅) | |
18 | 17, 1 | eleqtrdi 2837 | . . . . . . . . . . . 12 β’ ((πΌ β Fin β§ π β π΅) β π β (β βm πΌ)) |
19 | 18 | 3adant2 1128 | . . . . . . . . . . 11 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β π β (β βm πΌ)) |
20 | elmapi 8845 | . . . . . . . . . . 11 β’ (π β (β βm πΌ) β π:πΌβΆβ) | |
21 | 19, 20 | syl 17 | . . . . . . . . . 10 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β π:πΌβΆβ) |
22 | 21 | ffvelcdmda 7080 | . . . . . . . . 9 β’ (((πΌ β Fin β§ π β π΅ β§ π β π΅) β§ π β πΌ) β (πβπ) β β) |
23 | 16, 22 | resubcld 11646 | . . . . . . . 8 β’ (((πΌ β Fin β§ π β π΅ β§ π β π΅) β§ π β πΌ) β ((πβπ) β (πβπ)) β β) |
24 | 23 | resqcld 14095 | . . . . . . 7 β’ (((πΌ β Fin β§ π β π΅ β§ π β π΅) β§ π β πΌ) β (((πβπ) β (πβπ))β2) β β) |
25 | 10, 24 | regsumfsum 21329 | . . . . . 6 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β ((βfld βΎs β) Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))) = Ξ£π β πΌ (((πβπ) β (πβπ))β2)) |
26 | 9, 25 | eqtr2id 2779 | . . . . 5 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β Ξ£π β πΌ (((πβπ) β (πβπ))β2) = (βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2)))) |
27 | 26 | fveq2d 6889 | . . . 4 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)) = (ββ(βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))))) |
28 | 27 | 3expb 1117 | . . 3 β’ ((πΌ β Fin β§ (π β π΅ β§ π β π΅)) β (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)) = (ββ(βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))))) |
29 | 6, 7, 28 | mpoeq123dva 7479 | . 2 β’ (πΌ β Fin β (π β π΅, π β π΅ β¦ (ββΞ£π β πΌ (((πβπ) β (πβπ))β2))) = (π β (Baseβπ»), π β (Baseβπ») β¦ (ββ(βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2)))))) |
30 | 3, 4 | rrxds 25276 | . 2 β’ (πΌ β Fin β (π β (Baseβπ»), π β (Baseβπ») β¦ (ββ(βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))))) = (distβπ»)) |
31 | 29, 30 | eqtr2d 2767 | 1 β’ (πΌ β Fin β (distβπ») = (π β π΅, π β π΅ β¦ (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β¦ cmpt 5224 βΆwf 6533 βcfv 6537 (class class class)co 7405 β cmpo 7407 βm cmap 8822 Fincfn 8941 βcr 11111 β cmin 11448 2c2 12271 βcexp 14032 βcsqrt 15186 Ξ£csu 15638 Basecbs 17153 βΎs cress 17182 distcds 17215 Ξ£g cgsu 17395 βfldccnfld 21240 βfldcrefld 21497 β^crrx 25266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14033 df-hash 14296 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-sum 15639 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-0g 17396 df-gsum 17397 df-prds 17402 df-pws 17404 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-ghm 19139 df-cntz 19233 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-cring 20141 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-dvr 20303 df-rhm 20374 df-subrng 20446 df-subrg 20471 df-drng 20589 df-field 20590 df-staf 20688 df-srng 20689 df-lmod 20708 df-lss 20779 df-sra 21021 df-rgmod 21022 df-cnfld 21241 df-refld 21498 df-dsmm 21627 df-frlm 21642 df-nm 24446 df-tng 24448 df-tcph 25052 df-rrx 25268 |
This theorem is referenced by: rrxdsfival 25296 ehleudis 25301 rrndistlt 45575 qndenserrnopnlem 45582 rrndsmet 45587 ioorrnopnlem 45589 hoiqssbllem2 45908 |
Copyright terms: Public domain | W3C validator |