![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxdsfi | Structured version Visualization version GIF version |
Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rrxdsfi.h | β’ π» = (β^βπΌ) |
rrxdsfi.b | β’ π΅ = (β βm πΌ) |
Ref | Expression |
---|---|
rrxdsfi | β’ (πΌ β Fin β (distβπ») = (π β π΅, π β π΅ β¦ (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxdsfi.b | . . . 4 β’ π΅ = (β βm πΌ) | |
2 | id 22 | . . . . 5 β’ (πΌ β Fin β πΌ β Fin) | |
3 | rrxdsfi.h | . . . . 5 β’ π» = (β^βπΌ) | |
4 | eqid 2732 | . . . . 5 β’ (Baseβπ») = (Baseβπ») | |
5 | 2, 3, 4 | rrxbasefi 24918 | . . . 4 β’ (πΌ β Fin β (Baseβπ») = (β βm πΌ)) |
6 | 1, 5 | eqtr4id 2791 | . . 3 β’ (πΌ β Fin β π΅ = (Baseβπ»)) |
7 | 6 | adantr 481 | . . 3 β’ ((πΌ β Fin β§ π β π΅) β π΅ = (Baseβπ»)) |
8 | df-refld 21149 | . . . . . . 7 β’ βfld = (βfld βΎs β) | |
9 | 8 | oveq1i 7415 | . . . . . 6 β’ (βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))) = ((βfld βΎs β) Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))) |
10 | simp1 1136 | . . . . . . 7 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β πΌ β Fin) | |
11 | simpr 485 | . . . . . . . . . . . . 13 β’ ((πΌ β Fin β§ π β π΅) β π β π΅) | |
12 | 11, 1 | eleqtrdi 2843 | . . . . . . . . . . . 12 β’ ((πΌ β Fin β§ π β π΅) β π β (β βm πΌ)) |
13 | 12 | 3adant3 1132 | . . . . . . . . . . 11 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β π β (β βm πΌ)) |
14 | elmapi 8839 | . . . . . . . . . . 11 β’ (π β (β βm πΌ) β π:πΌβΆβ) | |
15 | 13, 14 | syl 17 | . . . . . . . . . 10 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β π:πΌβΆβ) |
16 | 15 | ffvelcdmda 7083 | . . . . . . . . 9 β’ (((πΌ β Fin β§ π β π΅ β§ π β π΅) β§ π β πΌ) β (πβπ) β β) |
17 | simpr 485 | . . . . . . . . . . . . 13 β’ ((πΌ β Fin β§ π β π΅) β π β π΅) | |
18 | 17, 1 | eleqtrdi 2843 | . . . . . . . . . . . 12 β’ ((πΌ β Fin β§ π β π΅) β π β (β βm πΌ)) |
19 | 18 | 3adant2 1131 | . . . . . . . . . . 11 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β π β (β βm πΌ)) |
20 | elmapi 8839 | . . . . . . . . . . 11 β’ (π β (β βm πΌ) β π:πΌβΆβ) | |
21 | 19, 20 | syl 17 | . . . . . . . . . 10 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β π:πΌβΆβ) |
22 | 21 | ffvelcdmda 7083 | . . . . . . . . 9 β’ (((πΌ β Fin β§ π β π΅ β§ π β π΅) β§ π β πΌ) β (πβπ) β β) |
23 | 16, 22 | resubcld 11638 | . . . . . . . 8 β’ (((πΌ β Fin β§ π β π΅ β§ π β π΅) β§ π β πΌ) β ((πβπ) β (πβπ)) β β) |
24 | 23 | resqcld 14086 | . . . . . . 7 β’ (((πΌ β Fin β§ π β π΅ β§ π β π΅) β§ π β πΌ) β (((πβπ) β (πβπ))β2) β β) |
25 | 10, 24 | regsumfsum 21005 | . . . . . 6 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β ((βfld βΎs β) Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))) = Ξ£π β πΌ (((πβπ) β (πβπ))β2)) |
26 | 9, 25 | eqtr2id 2785 | . . . . 5 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β Ξ£π β πΌ (((πβπ) β (πβπ))β2) = (βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2)))) |
27 | 26 | fveq2d 6892 | . . . 4 β’ ((πΌ β Fin β§ π β π΅ β§ π β π΅) β (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)) = (ββ(βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))))) |
28 | 27 | 3expb 1120 | . . 3 β’ ((πΌ β Fin β§ (π β π΅ β§ π β π΅)) β (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)) = (ββ(βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))))) |
29 | 6, 7, 28 | mpoeq123dva 7479 | . 2 β’ (πΌ β Fin β (π β π΅, π β π΅ β¦ (ββΞ£π β πΌ (((πβπ) β (πβπ))β2))) = (π β (Baseβπ»), π β (Baseβπ») β¦ (ββ(βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2)))))) |
30 | 3, 4 | rrxds 24901 | . 2 β’ (πΌ β Fin β (π β (Baseβπ»), π β (Baseβπ») β¦ (ββ(βfld Ξ£g (π β πΌ β¦ (((πβπ) β (πβπ))β2))))) = (distβπ»)) |
31 | 29, 30 | eqtr2d 2773 | 1 β’ (πΌ β Fin β (distβπ») = (π β π΅, π β π΅ β¦ (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β¦ cmpt 5230 βΆwf 6536 βcfv 6540 (class class class)co 7405 β cmpo 7407 βm cmap 8816 Fincfn 8935 βcr 11105 β cmin 11440 2c2 12263 βcexp 14023 βcsqrt 15176 Ξ£csu 15628 Basecbs 17140 βΎs cress 17169 distcds 17202 Ξ£g cgsu 17382 βfldccnfld 20936 βfldcrefld 21148 β^crrx 24891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-dvr 20207 df-rnghom 20243 df-drng 20309 df-field 20310 df-subrg 20353 df-staf 20445 df-srng 20446 df-lmod 20465 df-lss 20535 df-sra 20777 df-rgmod 20778 df-cnfld 20937 df-refld 21149 df-dsmm 21278 df-frlm 21293 df-nm 24082 df-tng 24084 df-tcph 24677 df-rrx 24893 |
This theorem is referenced by: rrxdsfival 24921 ehleudis 24926 rrndistlt 44992 qndenserrnopnlem 44999 rrndsmet 45004 ioorrnopnlem 45006 hoiqssbllem2 45325 |
Copyright terms: Public domain | W3C validator |