| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul4i | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| mul.3 | ⊢ 𝐶 ∈ ℂ |
| mul4.4 | ⊢ 𝐷 ∈ ℂ |
| Ref | Expression |
|---|---|
| mul4i | ⊢ ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mul.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | mul4.4 | . 2 ⊢ 𝐷 ∈ ℂ | |
| 5 | mul4 11292 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | mp4an 693 | 1 ⊢ ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 · cmul 11022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-mulcl 11079 ax-mulcom 11081 ax-mulass 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 |
| This theorem is referenced by: faclbnd4lem1 14207 bposlem8 27249 normlem1 31111 dpmul 32922 dpmul4 32923 |
| Copyright terms: Public domain | W3C validator |