Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul4i | Structured version Visualization version GIF version |
Description: Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
mul.3 | ⊢ 𝐶 ∈ ℂ |
mul4.4 | ⊢ 𝐷 ∈ ℂ |
Ref | Expression |
---|---|
mul4i | ⊢ ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mul.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mul4.4 | . 2 ⊢ 𝐷 ∈ ℂ | |
5 | mul4 11171 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | |
6 | 1, 2, 3, 4, 5 | mp4an 689 | 1 ⊢ ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 (class class class)co 7295 ℂcc 10897 · cmul 10904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-mulcl 10961 ax-mulcom 10963 ax-mulass 10965 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-iota 6399 df-fv 6455 df-ov 7298 |
This theorem is referenced by: faclbnd4lem1 14035 bposlem8 26467 normlem1 29500 dpmul 31215 dpmul4 31216 |
Copyright terms: Public domain | W3C validator |