MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul32i Structured version   Visualization version   GIF version

Theorem mul32i 11306
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
mul.3 𝐶 ∈ ℂ
Assertion
Ref Expression
mul32i ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)

Proof of Theorem mul32i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 mul.3 . 2 𝐶 ∈ ℂ
4 mul32 11276 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
51, 2, 3, 4mp3an 1463 1 ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11001   · cmul 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-mulcom 11067  ax-mulass 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  8th4div3  12338  faclbnd4lem1  14197  bpoly4  15963  dec5nprm  16975  dec2nprm  16976  karatsuba  16992  quart1lem  26790  log2ublem2  26882  log2ub  26884  normlem3  31087  bcseqi  31095  dpmul100  32872  dpmul1000  32874
  Copyright terms: Public domain W3C validator