MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul32i Structured version   Visualization version   GIF version

Theorem mul32i 11171
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
mul.3 𝐶 ∈ ℂ
Assertion
Ref Expression
mul32i ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)

Proof of Theorem mul32i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 mul.3 . 2 𝐶 ∈ ℂ
4 mul32 11141 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
51, 2, 3, 4mp3an 1460 1 ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-mulcom 10935  ax-mulass 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  8th4div3  12193  faclbnd4lem1  14007  bpoly4  15769  dec5nprm  16767  dec2nprm  16768  karatsuba  16785  quart1lem  26005  log2ublem2  26097  log2ub  26099  normlem3  29474  bcseqi  29482  dpmul100  31171  dpmul1000  31173
  Copyright terms: Public domain W3C validator