Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul32i | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
mul.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mul32i | ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mul.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mul32 10844 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
5 | 1, 2, 3, 4 | mp3an 1458 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 (class class class)co 7150 ℂcc 10573 · cmul 10580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-mulcom 10639 ax-mulass 10641 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-ov 7153 |
This theorem is referenced by: 8th4div3 11894 faclbnd4lem1 13703 bpoly4 15461 dec5nprm 16457 dec2nprm 16458 karatsuba 16475 quart1lem 25540 log2ublem2 25632 log2ub 25634 normlem3 28994 bcseqi 29002 dpmul100 30695 dpmul1000 30697 |
Copyright terms: Public domain | W3C validator |