MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul32i Structured version   Visualization version   GIF version

Theorem mul32i 11370
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
mul.3 𝐶 ∈ ℂ
Assertion
Ref Expression
mul32i ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)

Proof of Theorem mul32i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 mul.3 . 2 𝐶 ∈ ℂ
4 mul32 11340 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
51, 2, 3, 4mp3an 1463 1 ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066   · cmul 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-mulcom 11132  ax-mulass 11134
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  8th4div3  12402  faclbnd4lem1  14258  bpoly4  16025  dec5nprm  17037  dec2nprm  17038  karatsuba  17054  quart1lem  26765  log2ublem2  26857  log2ub  26859  normlem3  31041  bcseqi  31049  dpmul100  32817  dpmul1000  32819
  Copyright terms: Public domain W3C validator