Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul Structured version   Visualization version   GIF version

Theorem dpmul 30584
 Description: Multiplication with one decimal point. (Contributed by Thierry Arnoux, 26-Dec-2021.)
Hypotheses
Ref Expression
dpmul.a 𝐴 ∈ ℕ0
dpmul.b 𝐵 ∈ ℕ0
dpmul.c 𝐶 ∈ ℕ0
dpmul.d 𝐷 ∈ ℕ0
dpmul.e 𝐸 ∈ ℕ0
dpmul.g 𝐺 ∈ ℕ0
dpmul.j 𝐽 ∈ ℕ0
dpmul.k 𝐾 ∈ ℕ0
dpmul.1 (𝐴 · 𝐶) = 𝐹
dpmul.2 (𝐴 · 𝐷) = 𝑀
dpmul.3 (𝐵 · 𝐶) = 𝐿
dpmul.4 (𝐵 · 𝐷) = 𝐸𝐾
dpmul.5 ((𝐿 + 𝑀) + 𝐸) = 𝐺𝐽
dpmul.6 (𝐹 + 𝐺) = 𝐼
Assertion
Ref Expression
dpmul ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾)

Proof of Theorem dpmul
StepHypRef Expression
1 dpmul.a . . . . 5 𝐴 ∈ ℕ0
2 dpmul.b . . . . 5 𝐵 ∈ ℕ0
31, 2deccl 12107 . . . 4 𝐴𝐵 ∈ ℕ0
4 dpmul.c . . . 4 𝐶 ∈ ℕ0
5 dpmul.d . . . 4 𝐷 ∈ ℕ0
6 eqid 2821 . . . 4 𝐶𝐷 = 𝐶𝐷
7 dpmul.k . . . 4 𝐾 ∈ ℕ0
8 dpmul.2 . . . . . 6 (𝐴 · 𝐷) = 𝑀
91, 5nn0mulcli 11929 . . . . . 6 (𝐴 · 𝐷) ∈ ℕ0
108, 9eqeltrri 2910 . . . . 5 𝑀 ∈ ℕ0
11 dpmul.e . . . . 5 𝐸 ∈ ℕ0
1210, 11nn0addcli 11928 . . . 4 (𝑀 + 𝐸) ∈ ℕ0
13 eqid 2821 . . . . . . 7 𝐴𝐵 = 𝐴𝐵
14 dpmul.1 . . . . . . 7 (𝐴 · 𝐶) = 𝐹
15 dpmul.3 . . . . . . 7 (𝐵 · 𝐶) = 𝐿
164, 1, 2, 13, 14, 15decmul1 12156 . . . . . 6 (𝐴𝐵 · 𝐶) = 𝐹𝐿
1716oveq1i 7160 . . . . 5 ((𝐴𝐵 · 𝐶) + (𝑀 + 𝐸)) = (𝐹𝐿 + (𝑀 + 𝐸))
18 dfdec10 12095 . . . . . 6 𝐹𝐿 = ((10 · 𝐹) + 𝐿)
1918oveq1i 7160 . . . . 5 (𝐹𝐿 + (𝑀 + 𝐸)) = (((10 · 𝐹) + 𝐿) + (𝑀 + 𝐸))
20 10nn0 12110 . . . . . . . . 9 10 ∈ ℕ0
2120nn0cni 11903 . . . . . . . 8 10 ∈ ℂ
221, 4nn0mulcli 11929 . . . . . . . . . 10 (𝐴 · 𝐶) ∈ ℕ0
2314, 22eqeltrri 2910 . . . . . . . . 9 𝐹 ∈ ℕ0
2423nn0cni 11903 . . . . . . . 8 𝐹 ∈ ℂ
2521, 24mulcli 10642 . . . . . . 7 (10 · 𝐹) ∈ ℂ
262, 4nn0mulcli 11929 . . . . . . . . 9 (𝐵 · 𝐶) ∈ ℕ0
2715, 26eqeltrri 2910 . . . . . . . 8 𝐿 ∈ ℕ0
2827nn0cni 11903 . . . . . . 7 𝐿 ∈ ℂ
2912nn0cni 11903 . . . . . . 7 (𝑀 + 𝐸) ∈ ℂ
3025, 28, 29addassi 10645 . . . . . 6 (((10 · 𝐹) + 𝐿) + (𝑀 + 𝐸)) = ((10 · 𝐹) + (𝐿 + (𝑀 + 𝐸)))
31 dpmul.5 . . . . . . . 8 ((𝐿 + 𝑀) + 𝐸) = 𝐺𝐽
3210nn0cni 11903 . . . . . . . . 9 𝑀 ∈ ℂ
3311nn0cni 11903 . . . . . . . . 9 𝐸 ∈ ℂ
3428, 32, 33addassi 10645 . . . . . . . 8 ((𝐿 + 𝑀) + 𝐸) = (𝐿 + (𝑀 + 𝐸))
35 dfdec10 12095 . . . . . . . 8 𝐺𝐽 = ((10 · 𝐺) + 𝐽)
3631, 34, 353eqtr3ri 2853 . . . . . . 7 ((10 · 𝐺) + 𝐽) = (𝐿 + (𝑀 + 𝐸))
3736oveq2i 7161 . . . . . 6 ((10 · 𝐹) + ((10 · 𝐺) + 𝐽)) = ((10 · 𝐹) + (𝐿 + (𝑀 + 𝐸)))
38 dfdec10 12095 . . . . . . 7 𝐼𝐽 = ((10 · 𝐼) + 𝐽)
39 dpmul.g . . . . . . . . . . 11 𝐺 ∈ ℕ0
4039nn0cni 11903 . . . . . . . . . 10 𝐺 ∈ ℂ
4121, 24, 40adddii 10647 . . . . . . . . 9 (10 · (𝐹 + 𝐺)) = ((10 · 𝐹) + (10 · 𝐺))
42 dpmul.6 . . . . . . . . . 10 (𝐹 + 𝐺) = 𝐼
4342oveq2i 7161 . . . . . . . . 9 (10 · (𝐹 + 𝐺)) = (10 · 𝐼)
4441, 43eqtr3i 2846 . . . . . . . 8 ((10 · 𝐹) + (10 · 𝐺)) = (10 · 𝐼)
4544oveq1i 7160 . . . . . . 7 (((10 · 𝐹) + (10 · 𝐺)) + 𝐽) = ((10 · 𝐼) + 𝐽)
4621, 40mulcli 10642 . . . . . . . 8 (10 · 𝐺) ∈ ℂ
47 dpmul.j . . . . . . . . 9 𝐽 ∈ ℕ0
4847nn0cni 11903 . . . . . . . 8 𝐽 ∈ ℂ
4925, 46, 48addassi 10645 . . . . . . 7 (((10 · 𝐹) + (10 · 𝐺)) + 𝐽) = ((10 · 𝐹) + ((10 · 𝐺) + 𝐽))
5038, 45, 493eqtr2ri 2851 . . . . . 6 ((10 · 𝐹) + ((10 · 𝐺) + 𝐽)) = 𝐼𝐽
5130, 37, 503eqtr2i 2850 . . . . 5 (((10 · 𝐹) + 𝐿) + (𝑀 + 𝐸)) = 𝐼𝐽
5217, 19, 513eqtri 2848 . . . 4 ((𝐴𝐵 · 𝐶) + (𝑀 + 𝐸)) = 𝐼𝐽
538oveq1i 7160 . . . . 5 ((𝐴 · 𝐷) + 𝐸) = (𝑀 + 𝐸)
54 dpmul.4 . . . . 5 (𝐵 · 𝐷) = 𝐸𝐾
555, 1, 2, 13, 7, 11, 53, 54decmul1c 12157 . . . 4 (𝐴𝐵 · 𝐷) = (𝑀 + 𝐸)𝐾
563, 4, 5, 6, 7, 12, 52, 55decmul2c 12158 . . 3 (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐽𝐾
572nn0rei 11902 . . . . . . 7 𝐵 ∈ ℝ
58 dpcl 30562 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) ∈ ℝ)
591, 57, 58mp2an 690 . . . . . 6 (𝐴.𝐵) ∈ ℝ
6059recni 10649 . . . . 5 (𝐴.𝐵) ∈ ℂ
615nn0rei 11902 . . . . . . 7 𝐷 ∈ ℝ
62 dpcl 30562 . . . . . . 7 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) ∈ ℝ)
634, 61, 62mp2an 690 . . . . . 6 (𝐶.𝐷) ∈ ℝ
6463recni 10649 . . . . 5 (𝐶.𝐷) ∈ ℂ
6560, 64, 21, 21mul4i 10831 . . . 4 (((𝐴.𝐵) · (𝐶.𝐷)) · (10 · 10)) = (((𝐴.𝐵) · 10) · ((𝐶.𝐷) · 10))
6620dec0u 12113 . . . . 5 (10 · 10) = 100
6766oveq2i 7161 . . . 4 (((𝐴.𝐵) · (𝐶.𝐷)) · (10 · 10)) = (((𝐴.𝐵) · (𝐶.𝐷)) · 100)
681, 57dpmul10 30566 . . . . 5 ((𝐴.𝐵) · 10) = 𝐴𝐵
694, 61dpmul10 30566 . . . . 5 ((𝐶.𝐷) · 10) = 𝐶𝐷
7068, 69oveq12i 7162 . . . 4 (((𝐴.𝐵) · 10) · ((𝐶.𝐷) · 10)) = (𝐴𝐵 · 𝐶𝐷)
7165, 67, 703eqtr3i 2852 . . 3 (((𝐴.𝐵) · (𝐶.𝐷)) · 100) = (𝐴𝐵 · 𝐶𝐷)
7223, 39nn0addcli 11928 . . . . 5 (𝐹 + 𝐺) ∈ ℕ0
7342, 72eqeltrri 2910 . . . 4 𝐼 ∈ ℕ0
747nn0rei 11902 . . . 4 𝐾 ∈ ℝ
7573, 47, 74dpmul100 30568 . . 3 ((𝐼.𝐽𝐾) · 100) = 𝐼𝐽𝐾
7656, 71, 753eqtr4i 2854 . 2 (((𝐴.𝐵) · (𝐶.𝐷)) · 100) = ((𝐼.𝐽𝐾) · 100)
7760, 64mulcli 10642 . . 3 ((𝐴.𝐵) · (𝐶.𝐷)) ∈ ℂ
7847nn0rei 11902 . . . . . 6 𝐽 ∈ ℝ
79 dp2cl 30551 . . . . . 6 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → 𝐽𝐾 ∈ ℝ)
8078, 74, 79mp2an 690 . . . . 5 𝐽𝐾 ∈ ℝ
81 dpcl 30562 . . . . 5 ((𝐼 ∈ ℕ0𝐽𝐾 ∈ ℝ) → (𝐼.𝐽𝐾) ∈ ℝ)
8273, 80, 81mp2an 690 . . . 4 (𝐼.𝐽𝐾) ∈ ℝ
8382recni 10649 . . 3 (𝐼.𝐽𝐾) ∈ ℂ
84 10nn 12108 . . . . . 6 10 ∈ ℕ
8584decnncl2 12116 . . . . 5 100 ∈ ℕ
8685nncni 11642 . . . 4 100 ∈ ℂ
8785nnne0i 11671 . . . 4 100 ≠ 0
8886, 87pm3.2i 473 . . 3 (100 ∈ ℂ ∧ 100 ≠ 0)
89 mulcan2 11272 . . 3 ((((𝐴.𝐵) · (𝐶.𝐷)) ∈ ℂ ∧ (𝐼.𝐽𝐾) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) → ((((𝐴.𝐵) · (𝐶.𝐷)) · 100) = ((𝐼.𝐽𝐾) · 100) ↔ ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾)))
9077, 83, 88, 89mp3an 1457 . 2 ((((𝐴.𝐵) · (𝐶.𝐷)) · 100) = ((𝐼.𝐽𝐾) · 100) ↔ ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾))
9176, 90mpbi 232 1 ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∧ wa 398   = wceq 1533   ∈ wcel 2110   ≠ wne 3016  (class class class)co 7150  ℂcc 10529  ℝcr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  ℕ0cn0 11891  ;cdc 12092  _cdp2 30542  .cdp 30559 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-dec 12093  df-dp2 30543  df-dp 30560 This theorem is referenced by:  hgt750lem2  31918
 Copyright terms: Public domain W3C validator