Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul Structured version   Visualization version   GIF version

Theorem dpmul 32900
Description: Multiplication with one decimal point. (Contributed by Thierry Arnoux, 26-Dec-2021.)
Hypotheses
Ref Expression
dpmul.a 𝐴 ∈ ℕ0
dpmul.b 𝐵 ∈ ℕ0
dpmul.c 𝐶 ∈ ℕ0
dpmul.d 𝐷 ∈ ℕ0
dpmul.e 𝐸 ∈ ℕ0
dpmul.g 𝐺 ∈ ℕ0
dpmul.j 𝐽 ∈ ℕ0
dpmul.k 𝐾 ∈ ℕ0
dpmul.1 (𝐴 · 𝐶) = 𝐹
dpmul.2 (𝐴 · 𝐷) = 𝑀
dpmul.3 (𝐵 · 𝐶) = 𝐿
dpmul.4 (𝐵 · 𝐷) = 𝐸𝐾
dpmul.5 ((𝐿 + 𝑀) + 𝐸) = 𝐺𝐽
dpmul.6 (𝐹 + 𝐺) = 𝐼
Assertion
Ref Expression
dpmul ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾)

Proof of Theorem dpmul
StepHypRef Expression
1 dpmul.a . . . . 5 𝐴 ∈ ℕ0
2 dpmul.b . . . . 5 𝐵 ∈ ℕ0
31, 2deccl 12609 . . . 4 𝐴𝐵 ∈ ℕ0
4 dpmul.c . . . 4 𝐶 ∈ ℕ0
5 dpmul.d . . . 4 𝐷 ∈ ℕ0
6 eqid 2733 . . . 4 𝐶𝐷 = 𝐶𝐷
7 dpmul.k . . . 4 𝐾 ∈ ℕ0
8 dpmul.2 . . . . . 6 (𝐴 · 𝐷) = 𝑀
91, 5nn0mulcli 12426 . . . . . 6 (𝐴 · 𝐷) ∈ ℕ0
108, 9eqeltrri 2830 . . . . 5 𝑀 ∈ ℕ0
11 dpmul.e . . . . 5 𝐸 ∈ ℕ0
1210, 11nn0addcli 12425 . . . 4 (𝑀 + 𝐸) ∈ ℕ0
13 eqid 2733 . . . . . . 7 𝐴𝐵 = 𝐴𝐵
14 dpmul.1 . . . . . . 7 (𝐴 · 𝐶) = 𝐹
15 dpmul.3 . . . . . . 7 (𝐵 · 𝐶) = 𝐿
164, 1, 2, 13, 14, 15decmul1 12658 . . . . . 6 (𝐴𝐵 · 𝐶) = 𝐹𝐿
1716oveq1i 7362 . . . . 5 ((𝐴𝐵 · 𝐶) + (𝑀 + 𝐸)) = (𝐹𝐿 + (𝑀 + 𝐸))
18 dfdec10 12597 . . . . . 6 𝐹𝐿 = ((10 · 𝐹) + 𝐿)
1918oveq1i 7362 . . . . 5 (𝐹𝐿 + (𝑀 + 𝐸)) = (((10 · 𝐹) + 𝐿) + (𝑀 + 𝐸))
20 10nn0 12612 . . . . . . . . 9 10 ∈ ℕ0
2120nn0cni 12400 . . . . . . . 8 10 ∈ ℂ
221, 4nn0mulcli 12426 . . . . . . . . . 10 (𝐴 · 𝐶) ∈ ℕ0
2314, 22eqeltrri 2830 . . . . . . . . 9 𝐹 ∈ ℕ0
2423nn0cni 12400 . . . . . . . 8 𝐹 ∈ ℂ
2521, 24mulcli 11126 . . . . . . 7 (10 · 𝐹) ∈ ℂ
262, 4nn0mulcli 12426 . . . . . . . . 9 (𝐵 · 𝐶) ∈ ℕ0
2715, 26eqeltrri 2830 . . . . . . . 8 𝐿 ∈ ℕ0
2827nn0cni 12400 . . . . . . 7 𝐿 ∈ ℂ
2912nn0cni 12400 . . . . . . 7 (𝑀 + 𝐸) ∈ ℂ
3025, 28, 29addassi 11129 . . . . . 6 (((10 · 𝐹) + 𝐿) + (𝑀 + 𝐸)) = ((10 · 𝐹) + (𝐿 + (𝑀 + 𝐸)))
31 dpmul.5 . . . . . . . 8 ((𝐿 + 𝑀) + 𝐸) = 𝐺𝐽
3210nn0cni 12400 . . . . . . . . 9 𝑀 ∈ ℂ
3311nn0cni 12400 . . . . . . . . 9 𝐸 ∈ ℂ
3428, 32, 33addassi 11129 . . . . . . . 8 ((𝐿 + 𝑀) + 𝐸) = (𝐿 + (𝑀 + 𝐸))
35 dfdec10 12597 . . . . . . . 8 𝐺𝐽 = ((10 · 𝐺) + 𝐽)
3631, 34, 353eqtr3ri 2765 . . . . . . 7 ((10 · 𝐺) + 𝐽) = (𝐿 + (𝑀 + 𝐸))
3736oveq2i 7363 . . . . . 6 ((10 · 𝐹) + ((10 · 𝐺) + 𝐽)) = ((10 · 𝐹) + (𝐿 + (𝑀 + 𝐸)))
38 dfdec10 12597 . . . . . . 7 𝐼𝐽 = ((10 · 𝐼) + 𝐽)
39 dpmul.g . . . . . . . . . . 11 𝐺 ∈ ℕ0
4039nn0cni 12400 . . . . . . . . . 10 𝐺 ∈ ℂ
4121, 24, 40adddii 11131 . . . . . . . . 9 (10 · (𝐹 + 𝐺)) = ((10 · 𝐹) + (10 · 𝐺))
42 dpmul.6 . . . . . . . . . 10 (𝐹 + 𝐺) = 𝐼
4342oveq2i 7363 . . . . . . . . 9 (10 · (𝐹 + 𝐺)) = (10 · 𝐼)
4441, 43eqtr3i 2758 . . . . . . . 8 ((10 · 𝐹) + (10 · 𝐺)) = (10 · 𝐼)
4544oveq1i 7362 . . . . . . 7 (((10 · 𝐹) + (10 · 𝐺)) + 𝐽) = ((10 · 𝐼) + 𝐽)
4621, 40mulcli 11126 . . . . . . . 8 (10 · 𝐺) ∈ ℂ
47 dpmul.j . . . . . . . . 9 𝐽 ∈ ℕ0
4847nn0cni 12400 . . . . . . . 8 𝐽 ∈ ℂ
4925, 46, 48addassi 11129 . . . . . . 7 (((10 · 𝐹) + (10 · 𝐺)) + 𝐽) = ((10 · 𝐹) + ((10 · 𝐺) + 𝐽))
5038, 45, 493eqtr2ri 2763 . . . . . 6 ((10 · 𝐹) + ((10 · 𝐺) + 𝐽)) = 𝐼𝐽
5130, 37, 503eqtr2i 2762 . . . . 5 (((10 · 𝐹) + 𝐿) + (𝑀 + 𝐸)) = 𝐼𝐽
5217, 19, 513eqtri 2760 . . . 4 ((𝐴𝐵 · 𝐶) + (𝑀 + 𝐸)) = 𝐼𝐽
538oveq1i 7362 . . . . 5 ((𝐴 · 𝐷) + 𝐸) = (𝑀 + 𝐸)
54 dpmul.4 . . . . 5 (𝐵 · 𝐷) = 𝐸𝐾
555, 1, 2, 13, 7, 11, 53, 54decmul1c 12659 . . . 4 (𝐴𝐵 · 𝐷) = (𝑀 + 𝐸)𝐾
563, 4, 5, 6, 7, 12, 52, 55decmul2c 12660 . . 3 (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐽𝐾
572nn0rei 12399 . . . . . . 7 𝐵 ∈ ℝ
58 dpcl 32878 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) ∈ ℝ)
591, 57, 58mp2an 692 . . . . . 6 (𝐴.𝐵) ∈ ℝ
6059recni 11133 . . . . 5 (𝐴.𝐵) ∈ ℂ
615nn0rei 12399 . . . . . . 7 𝐷 ∈ ℝ
62 dpcl 32878 . . . . . . 7 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) ∈ ℝ)
634, 61, 62mp2an 692 . . . . . 6 (𝐶.𝐷) ∈ ℝ
6463recni 11133 . . . . 5 (𝐶.𝐷) ∈ ℂ
6560, 64, 21, 21mul4i 11317 . . . 4 (((𝐴.𝐵) · (𝐶.𝐷)) · (10 · 10)) = (((𝐴.𝐵) · 10) · ((𝐶.𝐷) · 10))
6620dec0u 12615 . . . . 5 (10 · 10) = 100
6766oveq2i 7363 . . . 4 (((𝐴.𝐵) · (𝐶.𝐷)) · (10 · 10)) = (((𝐴.𝐵) · (𝐶.𝐷)) · 100)
681, 57dpmul10 32882 . . . . 5 ((𝐴.𝐵) · 10) = 𝐴𝐵
694, 61dpmul10 32882 . . . . 5 ((𝐶.𝐷) · 10) = 𝐶𝐷
7068, 69oveq12i 7364 . . . 4 (((𝐴.𝐵) · 10) · ((𝐶.𝐷) · 10)) = (𝐴𝐵 · 𝐶𝐷)
7165, 67, 703eqtr3i 2764 . . 3 (((𝐴.𝐵) · (𝐶.𝐷)) · 100) = (𝐴𝐵 · 𝐶𝐷)
7223, 39nn0addcli 12425 . . . . 5 (𝐹 + 𝐺) ∈ ℕ0
7342, 72eqeltrri 2830 . . . 4 𝐼 ∈ ℕ0
747nn0rei 12399 . . . 4 𝐾 ∈ ℝ
7573, 47, 74dpmul100 32884 . . 3 ((𝐼.𝐽𝐾) · 100) = 𝐼𝐽𝐾
7656, 71, 753eqtr4i 2766 . 2 (((𝐴.𝐵) · (𝐶.𝐷)) · 100) = ((𝐼.𝐽𝐾) · 100)
7760, 64mulcli 11126 . . 3 ((𝐴.𝐵) · (𝐶.𝐷)) ∈ ℂ
7847nn0rei 12399 . . . . . 6 𝐽 ∈ ℝ
79 dp2cl 32867 . . . . . 6 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → 𝐽𝐾 ∈ ℝ)
8078, 74, 79mp2an 692 . . . . 5 𝐽𝐾 ∈ ℝ
81 dpcl 32878 . . . . 5 ((𝐼 ∈ ℕ0𝐽𝐾 ∈ ℝ) → (𝐼.𝐽𝐾) ∈ ℝ)
8273, 80, 81mp2an 692 . . . 4 (𝐼.𝐽𝐾) ∈ ℝ
8382recni 11133 . . 3 (𝐼.𝐽𝐾) ∈ ℂ
84 10nn 12610 . . . . . 6 10 ∈ ℕ
8584decnncl2 12618 . . . . 5 100 ∈ ℕ
8685nncni 12142 . . . 4 100 ∈ ℂ
8785nnne0i 12172 . . . 4 100 ≠ 0
8886, 87pm3.2i 470 . . 3 (100 ∈ ℂ ∧ 100 ≠ 0)
89 mulcan2 11762 . . 3 ((((𝐴.𝐵) · (𝐶.𝐷)) ∈ ℂ ∧ (𝐼.𝐽𝐾) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) → ((((𝐴.𝐵) · (𝐶.𝐷)) · 100) = ((𝐼.𝐽𝐾) · 100) ↔ ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾)))
9077, 83, 88, 89mp3an 1463 . 2 ((((𝐴.𝐵) · (𝐶.𝐷)) · 100) = ((𝐼.𝐽𝐾) · 100) ↔ ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾))
9176, 90mpbi 230 1 ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  0cn0 12388  cdc 12594  cdp2 32858  .cdp 32875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-dec 12595  df-dp2 32859  df-dp 32876
This theorem is referenced by:  hgt750lem2  34686
  Copyright terms: Public domain W3C validator