Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul Structured version   Visualization version   GIF version

Theorem dpmul 30593
Description: Multiplication with one decimal point. (Contributed by Thierry Arnoux, 26-Dec-2021.)
Hypotheses
Ref Expression
dpmul.a 𝐴 ∈ ℕ0
dpmul.b 𝐵 ∈ ℕ0
dpmul.c 𝐶 ∈ ℕ0
dpmul.d 𝐷 ∈ ℕ0
dpmul.e 𝐸 ∈ ℕ0
dpmul.g 𝐺 ∈ ℕ0
dpmul.j 𝐽 ∈ ℕ0
dpmul.k 𝐾 ∈ ℕ0
dpmul.1 (𝐴 · 𝐶) = 𝐹
dpmul.2 (𝐴 · 𝐷) = 𝑀
dpmul.3 (𝐵 · 𝐶) = 𝐿
dpmul.4 (𝐵 · 𝐷) = 𝐸𝐾
dpmul.5 ((𝐿 + 𝑀) + 𝐸) = 𝐺𝐽
dpmul.6 (𝐹 + 𝐺) = 𝐼
Assertion
Ref Expression
dpmul ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾)

Proof of Theorem dpmul
StepHypRef Expression
1 dpmul.a . . . . 5 𝐴 ∈ ℕ0
2 dpmul.b . . . . 5 𝐵 ∈ ℕ0
31, 2deccl 12116 . . . 4 𝐴𝐵 ∈ ℕ0
4 dpmul.c . . . 4 𝐶 ∈ ℕ0
5 dpmul.d . . . 4 𝐷 ∈ ℕ0
6 eqid 2824 . . . 4 𝐶𝐷 = 𝐶𝐷
7 dpmul.k . . . 4 𝐾 ∈ ℕ0
8 dpmul.2 . . . . . 6 (𝐴 · 𝐷) = 𝑀
91, 5nn0mulcli 11938 . . . . . 6 (𝐴 · 𝐷) ∈ ℕ0
108, 9eqeltrri 2913 . . . . 5 𝑀 ∈ ℕ0
11 dpmul.e . . . . 5 𝐸 ∈ ℕ0
1210, 11nn0addcli 11937 . . . 4 (𝑀 + 𝐸) ∈ ℕ0
13 eqid 2824 . . . . . . 7 𝐴𝐵 = 𝐴𝐵
14 dpmul.1 . . . . . . 7 (𝐴 · 𝐶) = 𝐹
15 dpmul.3 . . . . . . 7 (𝐵 · 𝐶) = 𝐿
164, 1, 2, 13, 14, 15decmul1 12165 . . . . . 6 (𝐴𝐵 · 𝐶) = 𝐹𝐿
1716oveq1i 7169 . . . . 5 ((𝐴𝐵 · 𝐶) + (𝑀 + 𝐸)) = (𝐹𝐿 + (𝑀 + 𝐸))
18 dfdec10 12104 . . . . . 6 𝐹𝐿 = ((10 · 𝐹) + 𝐿)
1918oveq1i 7169 . . . . 5 (𝐹𝐿 + (𝑀 + 𝐸)) = (((10 · 𝐹) + 𝐿) + (𝑀 + 𝐸))
20 10nn0 12119 . . . . . . . . 9 10 ∈ ℕ0
2120nn0cni 11912 . . . . . . . 8 10 ∈ ℂ
221, 4nn0mulcli 11938 . . . . . . . . . 10 (𝐴 · 𝐶) ∈ ℕ0
2314, 22eqeltrri 2913 . . . . . . . . 9 𝐹 ∈ ℕ0
2423nn0cni 11912 . . . . . . . 8 𝐹 ∈ ℂ
2521, 24mulcli 10651 . . . . . . 7 (10 · 𝐹) ∈ ℂ
262, 4nn0mulcli 11938 . . . . . . . . 9 (𝐵 · 𝐶) ∈ ℕ0
2715, 26eqeltrri 2913 . . . . . . . 8 𝐿 ∈ ℕ0
2827nn0cni 11912 . . . . . . 7 𝐿 ∈ ℂ
2912nn0cni 11912 . . . . . . 7 (𝑀 + 𝐸) ∈ ℂ
3025, 28, 29addassi 10654 . . . . . 6 (((10 · 𝐹) + 𝐿) + (𝑀 + 𝐸)) = ((10 · 𝐹) + (𝐿 + (𝑀 + 𝐸)))
31 dpmul.5 . . . . . . . 8 ((𝐿 + 𝑀) + 𝐸) = 𝐺𝐽
3210nn0cni 11912 . . . . . . . . 9 𝑀 ∈ ℂ
3311nn0cni 11912 . . . . . . . . 9 𝐸 ∈ ℂ
3428, 32, 33addassi 10654 . . . . . . . 8 ((𝐿 + 𝑀) + 𝐸) = (𝐿 + (𝑀 + 𝐸))
35 dfdec10 12104 . . . . . . . 8 𝐺𝐽 = ((10 · 𝐺) + 𝐽)
3631, 34, 353eqtr3ri 2856 . . . . . . 7 ((10 · 𝐺) + 𝐽) = (𝐿 + (𝑀 + 𝐸))
3736oveq2i 7170 . . . . . 6 ((10 · 𝐹) + ((10 · 𝐺) + 𝐽)) = ((10 · 𝐹) + (𝐿 + (𝑀 + 𝐸)))
38 dfdec10 12104 . . . . . . 7 𝐼𝐽 = ((10 · 𝐼) + 𝐽)
39 dpmul.g . . . . . . . . . . 11 𝐺 ∈ ℕ0
4039nn0cni 11912 . . . . . . . . . 10 𝐺 ∈ ℂ
4121, 24, 40adddii 10656 . . . . . . . . 9 (10 · (𝐹 + 𝐺)) = ((10 · 𝐹) + (10 · 𝐺))
42 dpmul.6 . . . . . . . . . 10 (𝐹 + 𝐺) = 𝐼
4342oveq2i 7170 . . . . . . . . 9 (10 · (𝐹 + 𝐺)) = (10 · 𝐼)
4441, 43eqtr3i 2849 . . . . . . . 8 ((10 · 𝐹) + (10 · 𝐺)) = (10 · 𝐼)
4544oveq1i 7169 . . . . . . 7 (((10 · 𝐹) + (10 · 𝐺)) + 𝐽) = ((10 · 𝐼) + 𝐽)
4621, 40mulcli 10651 . . . . . . . 8 (10 · 𝐺) ∈ ℂ
47 dpmul.j . . . . . . . . 9 𝐽 ∈ ℕ0
4847nn0cni 11912 . . . . . . . 8 𝐽 ∈ ℂ
4925, 46, 48addassi 10654 . . . . . . 7 (((10 · 𝐹) + (10 · 𝐺)) + 𝐽) = ((10 · 𝐹) + ((10 · 𝐺) + 𝐽))
5038, 45, 493eqtr2ri 2854 . . . . . 6 ((10 · 𝐹) + ((10 · 𝐺) + 𝐽)) = 𝐼𝐽
5130, 37, 503eqtr2i 2853 . . . . 5 (((10 · 𝐹) + 𝐿) + (𝑀 + 𝐸)) = 𝐼𝐽
5217, 19, 513eqtri 2851 . . . 4 ((𝐴𝐵 · 𝐶) + (𝑀 + 𝐸)) = 𝐼𝐽
538oveq1i 7169 . . . . 5 ((𝐴 · 𝐷) + 𝐸) = (𝑀 + 𝐸)
54 dpmul.4 . . . . 5 (𝐵 · 𝐷) = 𝐸𝐾
555, 1, 2, 13, 7, 11, 53, 54decmul1c 12166 . . . 4 (𝐴𝐵 · 𝐷) = (𝑀 + 𝐸)𝐾
563, 4, 5, 6, 7, 12, 52, 55decmul2c 12167 . . 3 (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐽𝐾
572nn0rei 11911 . . . . . . 7 𝐵 ∈ ℝ
58 dpcl 30571 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) ∈ ℝ)
591, 57, 58mp2an 690 . . . . . 6 (𝐴.𝐵) ∈ ℝ
6059recni 10658 . . . . 5 (𝐴.𝐵) ∈ ℂ
615nn0rei 11911 . . . . . . 7 𝐷 ∈ ℝ
62 dpcl 30571 . . . . . . 7 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) ∈ ℝ)
634, 61, 62mp2an 690 . . . . . 6 (𝐶.𝐷) ∈ ℝ
6463recni 10658 . . . . 5 (𝐶.𝐷) ∈ ℂ
6560, 64, 21, 21mul4i 10840 . . . 4 (((𝐴.𝐵) · (𝐶.𝐷)) · (10 · 10)) = (((𝐴.𝐵) · 10) · ((𝐶.𝐷) · 10))
6620dec0u 12122 . . . . 5 (10 · 10) = 100
6766oveq2i 7170 . . . 4 (((𝐴.𝐵) · (𝐶.𝐷)) · (10 · 10)) = (((𝐴.𝐵) · (𝐶.𝐷)) · 100)
681, 57dpmul10 30575 . . . . 5 ((𝐴.𝐵) · 10) = 𝐴𝐵
694, 61dpmul10 30575 . . . . 5 ((𝐶.𝐷) · 10) = 𝐶𝐷
7068, 69oveq12i 7171 . . . 4 (((𝐴.𝐵) · 10) · ((𝐶.𝐷) · 10)) = (𝐴𝐵 · 𝐶𝐷)
7165, 67, 703eqtr3i 2855 . . 3 (((𝐴.𝐵) · (𝐶.𝐷)) · 100) = (𝐴𝐵 · 𝐶𝐷)
7223, 39nn0addcli 11937 . . . . 5 (𝐹 + 𝐺) ∈ ℕ0
7342, 72eqeltrri 2913 . . . 4 𝐼 ∈ ℕ0
747nn0rei 11911 . . . 4 𝐾 ∈ ℝ
7573, 47, 74dpmul100 30577 . . 3 ((𝐼.𝐽𝐾) · 100) = 𝐼𝐽𝐾
7656, 71, 753eqtr4i 2857 . 2 (((𝐴.𝐵) · (𝐶.𝐷)) · 100) = ((𝐼.𝐽𝐾) · 100)
7760, 64mulcli 10651 . . 3 ((𝐴.𝐵) · (𝐶.𝐷)) ∈ ℂ
7847nn0rei 11911 . . . . . 6 𝐽 ∈ ℝ
79 dp2cl 30560 . . . . . 6 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → 𝐽𝐾 ∈ ℝ)
8078, 74, 79mp2an 690 . . . . 5 𝐽𝐾 ∈ ℝ
81 dpcl 30571 . . . . 5 ((𝐼 ∈ ℕ0𝐽𝐾 ∈ ℝ) → (𝐼.𝐽𝐾) ∈ ℝ)
8273, 80, 81mp2an 690 . . . 4 (𝐼.𝐽𝐾) ∈ ℝ
8382recni 10658 . . 3 (𝐼.𝐽𝐾) ∈ ℂ
84 10nn 12117 . . . . . 6 10 ∈ ℕ
8584decnncl2 12125 . . . . 5 100 ∈ ℕ
8685nncni 11651 . . . 4 100 ∈ ℂ
8785nnne0i 11680 . . . 4 100 ≠ 0
8886, 87pm3.2i 473 . . 3 (100 ∈ ℂ ∧ 100 ≠ 0)
89 mulcan2 11281 . . 3 ((((𝐴.𝐵) · (𝐶.𝐷)) ∈ ℂ ∧ (𝐼.𝐽𝐾) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) → ((((𝐴.𝐵) · (𝐶.𝐷)) · 100) = ((𝐼.𝐽𝐾) · 100) ↔ ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾)))
9077, 83, 88, 89mp3an 1457 . 2 ((((𝐴.𝐵) · (𝐶.𝐷)) · 100) = ((𝐼.𝐽𝐾) · 100) ↔ ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾))
9176, 90mpbi 232 1 ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼.𝐽𝐾)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  0cn0 11900  cdc 12101  cdp2 30551  .cdp 30568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-dec 12102  df-dp2 30552  df-dp 30569
This theorem is referenced by:  hgt750lem2  31927
  Copyright terms: Public domain W3C validator