HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem1 Structured version   Visualization version   GIF version

Theorem normlem1 29373
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem1.4 𝑅 ∈ ℝ
normlem1.5 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem1
StepHypRef Expression
1 normlem1.1 . . . 4 𝑆 ∈ ℂ
2 normlem1.4 . . . . 5 𝑅 ∈ ℝ
32recni 10920 . . . 4 𝑅 ∈ ℂ
41, 3mulcli 10913 . . 3 (𝑆 · 𝑅) ∈ ℂ
5 normlem1.2 . . 3 𝐹 ∈ ℋ
6 normlem1.3 . . 3 𝐺 ∈ ℋ
74, 5, 6normlem0 29372 . 2 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))))
81, 3cjmuli 14828 . . . . . . . 8 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅))
93cjrebi 14813 . . . . . . . . . 10 (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅)
102, 9mpbi 229 . . . . . . . . 9 (∗‘𝑅) = 𝑅
1110oveq2i 7266 . . . . . . . 8 ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅)
128, 11eqtri 2766 . . . . . . 7 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅)
1312negeqi 11144 . . . . . 6 -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅)
141cjcli 14808 . . . . . . 7 (∗‘𝑆) ∈ ℂ
1514, 3mulneg2i 11352 . . . . . 6 ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅)
1613, 15eqtr4i 2769 . . . . 5 -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅)
1716oveq1i 7265 . . . 4 (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
1817oveq2i 7266 . . 3 ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)))
191, 3mulneg2i 11352 . . . . . 6 (𝑆 · -𝑅) = -(𝑆 · 𝑅)
2019eqcomi 2747 . . . . 5 -(𝑆 · 𝑅) = (𝑆 · -𝑅)
2120oveq1i 7265 . . . 4 (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
228oveq2i 7266 . . . . . . 7 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅)))
233cjcli 14808 . . . . . . . . 9 (∗‘𝑅) ∈ ℂ
241, 3, 14, 23mul4i 11102 . . . . . . . 8 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅)))
25 normlem1.5 . . . . . . . . . . . 12 (abs‘𝑆) = 1
2625oveq1i 7265 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (1↑2)
271absvalsqi 15033 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆))
28 sq1 13840 . . . . . . . . . . 11 (1↑2) = 1
2926, 27, 283eqtr3i 2774 . . . . . . . . . 10 (𝑆 · (∗‘𝑆)) = 1
3010oveq2i 7266 . . . . . . . . . 10 (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅)
3129, 30oveq12i 7267 . . . . . . . . 9 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅))
323, 3mulcli 10913 . . . . . . . . . 10 (𝑅 · 𝑅) ∈ ℂ
3332mulid2i 10911 . . . . . . . . 9 (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅)
3431, 33eqtri 2766 . . . . . . . 8 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅)
3524, 34eqtri 2766 . . . . . . 7 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅)
3622, 35eqtri 2766 . . . . . 6 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅)
373sqvali 13825 . . . . . 6 (𝑅↑2) = (𝑅 · 𝑅)
3836, 37eqtr4i 2769 . . . . 5 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2)
3938oveq1i 7265 . . . 4 (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
4021, 39oveq12i 7267 . . 3 ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
4118, 40oveq12i 7267 . 2 (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
427, 41eqtri 2766 1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  -cneg 11136  2c2 11958  cexp 13710  ccj 14735  abscabs 14873  chba 29182   · csm 29184   ·ih csp 29185   cmv 29188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-hfvadd 29263  ax-hfvmul 29268  ax-hvmulass 29270  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-hvsub 29234
This theorem is referenced by:  normlem4  29376
  Copyright terms: Public domain W3C validator