HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem1 Structured version   Visualization version   GIF version

Theorem normlem1 28889
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem1.4 𝑅 ∈ ℝ
normlem1.5 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem1
StepHypRef Expression
1 normlem1.1 . . . 4 𝑆 ∈ ℂ
2 normlem1.4 . . . . 5 𝑅 ∈ ℝ
32recni 10657 . . . 4 𝑅 ∈ ℂ
41, 3mulcli 10650 . . 3 (𝑆 · 𝑅) ∈ ℂ
5 normlem1.2 . . 3 𝐹 ∈ ℋ
6 normlem1.3 . . 3 𝐺 ∈ ℋ
74, 5, 6normlem0 28888 . 2 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))))
81, 3cjmuli 14550 . . . . . . . 8 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅))
93cjrebi 14535 . . . . . . . . . 10 (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅)
102, 9mpbi 232 . . . . . . . . 9 (∗‘𝑅) = 𝑅
1110oveq2i 7169 . . . . . . . 8 ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅)
128, 11eqtri 2846 . . . . . . 7 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅)
1312negeqi 10881 . . . . . 6 -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅)
141cjcli 14530 . . . . . . 7 (∗‘𝑆) ∈ ℂ
1514, 3mulneg2i 11089 . . . . . 6 ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅)
1613, 15eqtr4i 2849 . . . . 5 -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅)
1716oveq1i 7168 . . . 4 (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
1817oveq2i 7169 . . 3 ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)))
191, 3mulneg2i 11089 . . . . . 6 (𝑆 · -𝑅) = -(𝑆 · 𝑅)
2019eqcomi 2832 . . . . 5 -(𝑆 · 𝑅) = (𝑆 · -𝑅)
2120oveq1i 7168 . . . 4 (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
228oveq2i 7169 . . . . . . 7 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅)))
233cjcli 14530 . . . . . . . . 9 (∗‘𝑅) ∈ ℂ
241, 3, 14, 23mul4i 10839 . . . . . . . 8 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅)))
25 normlem1.5 . . . . . . . . . . . 12 (abs‘𝑆) = 1
2625oveq1i 7168 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (1↑2)
271absvalsqi 14755 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆))
28 sq1 13561 . . . . . . . . . . 11 (1↑2) = 1
2926, 27, 283eqtr3i 2854 . . . . . . . . . 10 (𝑆 · (∗‘𝑆)) = 1
3010oveq2i 7169 . . . . . . . . . 10 (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅)
3129, 30oveq12i 7170 . . . . . . . . 9 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅))
323, 3mulcli 10650 . . . . . . . . . 10 (𝑅 · 𝑅) ∈ ℂ
3332mulid2i 10648 . . . . . . . . 9 (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅)
3431, 33eqtri 2846 . . . . . . . 8 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅)
3524, 34eqtri 2846 . . . . . . 7 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅)
3622, 35eqtri 2846 . . . . . 6 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅)
373sqvali 13546 . . . . . 6 (𝑅↑2) = (𝑅 · 𝑅)
3836, 37eqtr4i 2849 . . . . 5 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2)
3938oveq1i 7168 . . . 4 (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
4021, 39oveq12i 7170 . . 3 ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
4118, 40oveq12i 7170 . 2 (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
427, 41eqtri 2846 1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  1c1 10540   + caddc 10542   · cmul 10544  -cneg 10873  2c2 11695  cexp 13432  ccj 14457  abscabs 14595  chba 28698   · csm 28700   ·ih csp 28701   cmv 28704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-hfvadd 28779  ax-hfvmul 28784  ax-hvmulass 28786  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-hvsub 28750
This theorem is referenced by:  normlem4  28892
  Copyright terms: Public domain W3C validator