Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normlem1 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem1.1 | ⊢ 𝑆 ∈ ℂ |
normlem1.2 | ⊢ 𝐹 ∈ ℋ |
normlem1.3 | ⊢ 𝐺 ∈ ℋ |
normlem1.4 | ⊢ 𝑅 ∈ ℝ |
normlem1.5 | ⊢ (abs‘𝑆) = 1 |
Ref | Expression |
---|---|
normlem1 | ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem1.1 | . . . 4 ⊢ 𝑆 ∈ ℂ | |
2 | normlem1.4 | . . . . 5 ⊢ 𝑅 ∈ ℝ | |
3 | 2 | recni 10989 | . . . 4 ⊢ 𝑅 ∈ ℂ |
4 | 1, 3 | mulcli 10982 | . . 3 ⊢ (𝑆 · 𝑅) ∈ ℂ |
5 | normlem1.2 | . . 3 ⊢ 𝐹 ∈ ℋ | |
6 | normlem1.3 | . . 3 ⊢ 𝐺 ∈ ℋ | |
7 | 4, 5, 6 | normlem0 29471 | . 2 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) |
8 | 1, 3 | cjmuli 14900 | . . . . . . . 8 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅)) |
9 | 3 | cjrebi 14885 | . . . . . . . . . 10 ⊢ (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅) |
10 | 2, 9 | mpbi 229 | . . . . . . . . 9 ⊢ (∗‘𝑅) = 𝑅 |
11 | 10 | oveq2i 7286 | . . . . . . . 8 ⊢ ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅) |
12 | 8, 11 | eqtri 2766 | . . . . . . 7 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅) |
13 | 12 | negeqi 11214 | . . . . . 6 ⊢ -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅) |
14 | 1 | cjcli 14880 | . . . . . . 7 ⊢ (∗‘𝑆) ∈ ℂ |
15 | 14, 3 | mulneg2i 11422 | . . . . . 6 ⊢ ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅) |
16 | 13, 15 | eqtr4i 2769 | . . . . 5 ⊢ -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅) |
17 | 16 | oveq1i 7285 | . . . 4 ⊢ (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) |
18 | 17 | oveq2i 7286 | . . 3 ⊢ ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) |
19 | 1, 3 | mulneg2i 11422 | . . . . . 6 ⊢ (𝑆 · -𝑅) = -(𝑆 · 𝑅) |
20 | 19 | eqcomi 2747 | . . . . 5 ⊢ -(𝑆 · 𝑅) = (𝑆 · -𝑅) |
21 | 20 | oveq1i 7285 | . . . 4 ⊢ (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) |
22 | 8 | oveq2i 7286 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) |
23 | 3 | cjcli 14880 | . . . . . . . . 9 ⊢ (∗‘𝑅) ∈ ℂ |
24 | 1, 3, 14, 23 | mul4i 11172 | . . . . . . . 8 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) |
25 | normlem1.5 | . . . . . . . . . . . 12 ⊢ (abs‘𝑆) = 1 | |
26 | 25 | oveq1i 7285 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (1↑2) |
27 | 1 | absvalsqi 15105 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆)) |
28 | sq1 13912 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
29 | 26, 27, 28 | 3eqtr3i 2774 | . . . . . . . . . 10 ⊢ (𝑆 · (∗‘𝑆)) = 1 |
30 | 10 | oveq2i 7286 | . . . . . . . . . 10 ⊢ (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅) |
31 | 29, 30 | oveq12i 7287 | . . . . . . . . 9 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅)) |
32 | 3, 3 | mulcli 10982 | . . . . . . . . . 10 ⊢ (𝑅 · 𝑅) ∈ ℂ |
33 | 32 | mulid2i 10980 | . . . . . . . . 9 ⊢ (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅) |
34 | 31, 33 | eqtri 2766 | . . . . . . . 8 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅) |
35 | 24, 34 | eqtri 2766 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅) |
36 | 22, 35 | eqtri 2766 | . . . . . 6 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅) |
37 | 3 | sqvali 13897 | . . . . . 6 ⊢ (𝑅↑2) = (𝑅 · 𝑅) |
38 | 36, 37 | eqtr4i 2769 | . . . . 5 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2) |
39 | 38 | oveq1i 7285 | . . . 4 ⊢ (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺)) |
40 | 21, 39 | oveq12i 7287 | . . 3 ⊢ ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) |
41 | 18, 40 | oveq12i 7287 | . 2 ⊢ (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
42 | 7, 41 | eqtri 2766 | 1 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 1c1 10872 + caddc 10874 · cmul 10876 -cneg 11206 2c2 12028 ↑cexp 13782 ∗ccj 14807 abscabs 14945 ℋchba 29281 ·ℎ csm 29283 ·ih csp 29284 −ℎ cmv 29287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-hfvadd 29362 ax-hfvmul 29367 ax-hvmulass 29369 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-hvsub 29333 |
This theorem is referenced by: normlem4 29475 |
Copyright terms: Public domain | W3C validator |