| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normlem1.1 | ⊢ 𝑆 ∈ ℂ |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ |
| normlem1.3 | ⊢ 𝐺 ∈ ℋ |
| normlem1.4 | ⊢ 𝑅 ∈ ℝ |
| normlem1.5 | ⊢ (abs‘𝑆) = 1 |
| Ref | Expression |
|---|---|
| normlem1 | ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | . . . 4 ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.4 | . . . . 5 ⊢ 𝑅 ∈ ℝ | |
| 3 | 2 | recni 11195 | . . . 4 ⊢ 𝑅 ∈ ℂ |
| 4 | 1, 3 | mulcli 11188 | . . 3 ⊢ (𝑆 · 𝑅) ∈ ℂ |
| 5 | normlem1.2 | . . 3 ⊢ 𝐹 ∈ ℋ | |
| 6 | normlem1.3 | . . 3 ⊢ 𝐺 ∈ ℋ | |
| 7 | 4, 5, 6 | normlem0 31045 | . 2 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) |
| 8 | 1, 3 | cjmuli 15162 | . . . . . . . 8 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅)) |
| 9 | 3 | cjrebi 15147 | . . . . . . . . . 10 ⊢ (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅) |
| 10 | 2, 9 | mpbi 230 | . . . . . . . . 9 ⊢ (∗‘𝑅) = 𝑅 |
| 11 | 10 | oveq2i 7401 | . . . . . . . 8 ⊢ ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅) |
| 12 | 8, 11 | eqtri 2753 | . . . . . . 7 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅) |
| 13 | 12 | negeqi 11421 | . . . . . 6 ⊢ -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅) |
| 14 | 1 | cjcli 15142 | . . . . . . 7 ⊢ (∗‘𝑆) ∈ ℂ |
| 15 | 14, 3 | mulneg2i 11632 | . . . . . 6 ⊢ ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅) |
| 16 | 13, 15 | eqtr4i 2756 | . . . . 5 ⊢ -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅) |
| 17 | 16 | oveq1i 7400 | . . . 4 ⊢ (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) |
| 18 | 17 | oveq2i 7401 | . . 3 ⊢ ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) |
| 19 | 1, 3 | mulneg2i 11632 | . . . . . 6 ⊢ (𝑆 · -𝑅) = -(𝑆 · 𝑅) |
| 20 | 19 | eqcomi 2739 | . . . . 5 ⊢ -(𝑆 · 𝑅) = (𝑆 · -𝑅) |
| 21 | 20 | oveq1i 7400 | . . . 4 ⊢ (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) |
| 22 | 8 | oveq2i 7401 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) |
| 23 | 3 | cjcli 15142 | . . . . . . . . 9 ⊢ (∗‘𝑅) ∈ ℂ |
| 24 | 1, 3, 14, 23 | mul4i 11378 | . . . . . . . 8 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) |
| 25 | normlem1.5 | . . . . . . . . . . . 12 ⊢ (abs‘𝑆) = 1 | |
| 26 | 25 | oveq1i 7400 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (1↑2) |
| 27 | 1 | absvalsqi 15367 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆)) |
| 28 | sq1 14167 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
| 29 | 26, 27, 28 | 3eqtr3i 2761 | . . . . . . . . . 10 ⊢ (𝑆 · (∗‘𝑆)) = 1 |
| 30 | 10 | oveq2i 7401 | . . . . . . . . . 10 ⊢ (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅) |
| 31 | 29, 30 | oveq12i 7402 | . . . . . . . . 9 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅)) |
| 32 | 3, 3 | mulcli 11188 | . . . . . . . . . 10 ⊢ (𝑅 · 𝑅) ∈ ℂ |
| 33 | 32 | mullidi 11186 | . . . . . . . . 9 ⊢ (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅) |
| 34 | 31, 33 | eqtri 2753 | . . . . . . . 8 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅) |
| 35 | 24, 34 | eqtri 2753 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅) |
| 36 | 22, 35 | eqtri 2753 | . . . . . 6 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅) |
| 37 | 3 | sqvali 14152 | . . . . . 6 ⊢ (𝑅↑2) = (𝑅 · 𝑅) |
| 38 | 36, 37 | eqtr4i 2756 | . . . . 5 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2) |
| 39 | 38 | oveq1i 7400 | . . . 4 ⊢ (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺)) |
| 40 | 21, 39 | oveq12i 7402 | . . 3 ⊢ ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) |
| 41 | 18, 40 | oveq12i 7402 | . 2 ⊢ (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
| 42 | 7, 41 | eqtri 2753 | 1 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 1c1 11076 + caddc 11078 · cmul 11080 -cneg 11413 2c2 12248 ↑cexp 14033 ∗ccj 15069 abscabs 15207 ℋchba 30855 ·ℎ csm 30857 ·ih csp 30858 −ℎ cmv 30861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-hfvadd 30936 ax-hfvmul 30941 ax-hvmulass 30943 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-hvsub 30907 |
| This theorem is referenced by: normlem4 31049 |
| Copyright terms: Public domain | W3C validator |