| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normlem1.1 | ⊢ 𝑆 ∈ ℂ |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ |
| normlem1.3 | ⊢ 𝐺 ∈ ℋ |
| normlem1.4 | ⊢ 𝑅 ∈ ℝ |
| normlem1.5 | ⊢ (abs‘𝑆) = 1 |
| Ref | Expression |
|---|---|
| normlem1 | ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | . . . 4 ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.4 | . . . . 5 ⊢ 𝑅 ∈ ℝ | |
| 3 | 2 | recni 11249 | . . . 4 ⊢ 𝑅 ∈ ℂ |
| 4 | 1, 3 | mulcli 11242 | . . 3 ⊢ (𝑆 · 𝑅) ∈ ℂ |
| 5 | normlem1.2 | . . 3 ⊢ 𝐹 ∈ ℋ | |
| 6 | normlem1.3 | . . 3 ⊢ 𝐺 ∈ ℋ | |
| 7 | 4, 5, 6 | normlem0 31090 | . 2 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) |
| 8 | 1, 3 | cjmuli 15208 | . . . . . . . 8 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅)) |
| 9 | 3 | cjrebi 15193 | . . . . . . . . . 10 ⊢ (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅) |
| 10 | 2, 9 | mpbi 230 | . . . . . . . . 9 ⊢ (∗‘𝑅) = 𝑅 |
| 11 | 10 | oveq2i 7416 | . . . . . . . 8 ⊢ ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅) |
| 12 | 8, 11 | eqtri 2758 | . . . . . . 7 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅) |
| 13 | 12 | negeqi 11475 | . . . . . 6 ⊢ -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅) |
| 14 | 1 | cjcli 15188 | . . . . . . 7 ⊢ (∗‘𝑆) ∈ ℂ |
| 15 | 14, 3 | mulneg2i 11684 | . . . . . 6 ⊢ ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅) |
| 16 | 13, 15 | eqtr4i 2761 | . . . . 5 ⊢ -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅) |
| 17 | 16 | oveq1i 7415 | . . . 4 ⊢ (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) |
| 18 | 17 | oveq2i 7416 | . . 3 ⊢ ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) |
| 19 | 1, 3 | mulneg2i 11684 | . . . . . 6 ⊢ (𝑆 · -𝑅) = -(𝑆 · 𝑅) |
| 20 | 19 | eqcomi 2744 | . . . . 5 ⊢ -(𝑆 · 𝑅) = (𝑆 · -𝑅) |
| 21 | 20 | oveq1i 7415 | . . . 4 ⊢ (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) |
| 22 | 8 | oveq2i 7416 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) |
| 23 | 3 | cjcli 15188 | . . . . . . . . 9 ⊢ (∗‘𝑅) ∈ ℂ |
| 24 | 1, 3, 14, 23 | mul4i 11432 | . . . . . . . 8 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) |
| 25 | normlem1.5 | . . . . . . . . . . . 12 ⊢ (abs‘𝑆) = 1 | |
| 26 | 25 | oveq1i 7415 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (1↑2) |
| 27 | 1 | absvalsqi 15412 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆)) |
| 28 | sq1 14213 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
| 29 | 26, 27, 28 | 3eqtr3i 2766 | . . . . . . . . . 10 ⊢ (𝑆 · (∗‘𝑆)) = 1 |
| 30 | 10 | oveq2i 7416 | . . . . . . . . . 10 ⊢ (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅) |
| 31 | 29, 30 | oveq12i 7417 | . . . . . . . . 9 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅)) |
| 32 | 3, 3 | mulcli 11242 | . . . . . . . . . 10 ⊢ (𝑅 · 𝑅) ∈ ℂ |
| 33 | 32 | mullidi 11240 | . . . . . . . . 9 ⊢ (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅) |
| 34 | 31, 33 | eqtri 2758 | . . . . . . . 8 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅) |
| 35 | 24, 34 | eqtri 2758 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅) |
| 36 | 22, 35 | eqtri 2758 | . . . . . 6 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅) |
| 37 | 3 | sqvali 14198 | . . . . . 6 ⊢ (𝑅↑2) = (𝑅 · 𝑅) |
| 38 | 36, 37 | eqtr4i 2761 | . . . . 5 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2) |
| 39 | 38 | oveq1i 7415 | . . . 4 ⊢ (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺)) |
| 40 | 21, 39 | oveq12i 7417 | . . 3 ⊢ ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) |
| 41 | 18, 40 | oveq12i 7417 | . 2 ⊢ (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
| 42 | 7, 41 | eqtri 2758 | 1 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 1c1 11130 + caddc 11132 · cmul 11134 -cneg 11467 2c2 12295 ↑cexp 14079 ∗ccj 15115 abscabs 15253 ℋchba 30900 ·ℎ csm 30902 ·ih csp 30903 −ℎ cmv 30906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-hfvadd 30981 ax-hfvmul 30986 ax-hvmulass 30988 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-hvsub 30952 |
| This theorem is referenced by: normlem4 31094 |
| Copyright terms: Public domain | W3C validator |