HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem1 Structured version   Visualization version   GIF version

Theorem normlem1 31058
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem1.4 𝑅 ∈ ℝ
normlem1.5 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem1
StepHypRef Expression
1 normlem1.1 . . . 4 𝑆 ∈ ℂ
2 normlem1.4 . . . . 5 𝑅 ∈ ℝ
32recni 11257 . . . 4 𝑅 ∈ ℂ
41, 3mulcli 11250 . . 3 (𝑆 · 𝑅) ∈ ℂ
5 normlem1.2 . . 3 𝐹 ∈ ℋ
6 normlem1.3 . . 3 𝐺 ∈ ℋ
74, 5, 6normlem0 31057 . 2 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))))
81, 3cjmuli 15211 . . . . . . . 8 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅))
93cjrebi 15196 . . . . . . . . . 10 (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅)
102, 9mpbi 230 . . . . . . . . 9 (∗‘𝑅) = 𝑅
1110oveq2i 7424 . . . . . . . 8 ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅)
128, 11eqtri 2757 . . . . . . 7 (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅)
1312negeqi 11483 . . . . . 6 -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅)
141cjcli 15191 . . . . . . 7 (∗‘𝑆) ∈ ℂ
1514, 3mulneg2i 11692 . . . . . 6 ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅)
1613, 15eqtr4i 2760 . . . . 5 -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅)
1716oveq1i 7423 . . . 4 (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
1817oveq2i 7424 . . 3 ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)))
191, 3mulneg2i 11692 . . . . . 6 (𝑆 · -𝑅) = -(𝑆 · 𝑅)
2019eqcomi 2743 . . . . 5 -(𝑆 · 𝑅) = (𝑆 · -𝑅)
2120oveq1i 7423 . . . 4 (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
228oveq2i 7424 . . . . . . 7 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅)))
233cjcli 15191 . . . . . . . . 9 (∗‘𝑅) ∈ ℂ
241, 3, 14, 23mul4i 11440 . . . . . . . 8 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅)))
25 normlem1.5 . . . . . . . . . . . 12 (abs‘𝑆) = 1
2625oveq1i 7423 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (1↑2)
271absvalsqi 15415 . . . . . . . . . . 11 ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆))
28 sq1 14217 . . . . . . . . . . 11 (1↑2) = 1
2926, 27, 283eqtr3i 2765 . . . . . . . . . 10 (𝑆 · (∗‘𝑆)) = 1
3010oveq2i 7424 . . . . . . . . . 10 (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅)
3129, 30oveq12i 7425 . . . . . . . . 9 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅))
323, 3mulcli 11250 . . . . . . . . . 10 (𝑅 · 𝑅) ∈ ℂ
3332mullidi 11248 . . . . . . . . 9 (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅)
3431, 33eqtri 2757 . . . . . . . 8 ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅)
3524, 34eqtri 2757 . . . . . . 7 ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅)
3622, 35eqtri 2757 . . . . . 6 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅)
373sqvali 14202 . . . . . 6 (𝑅↑2) = (𝑅 · 𝑅)
3836, 37eqtr4i 2760 . . . . 5 ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2)
3938oveq1i 7423 . . . 4 (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
4021, 39oveq12i 7425 . . 3 ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
4118, 40oveq12i 7425 . 2 (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
427, 41eqtri 2757 1 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  1c1 11138   + caddc 11140   · cmul 11142  -cneg 11475  2c2 12303  cexp 14084  ccj 15118  abscabs 15256  chba 30867   · csm 30869   ·ih csp 30870   cmv 30873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-hfvadd 30948  ax-hfvmul 30953  ax-hvmulass 30955  ax-hfi 31027  ax-his1 31030  ax-his2 31031  ax-his3 31032
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-hvsub 30919
This theorem is referenced by:  normlem4  31061
  Copyright terms: Public domain W3C validator