Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normlem1 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem1.1 | ⊢ 𝑆 ∈ ℂ |
normlem1.2 | ⊢ 𝐹 ∈ ℋ |
normlem1.3 | ⊢ 𝐺 ∈ ℋ |
normlem1.4 | ⊢ 𝑅 ∈ ℝ |
normlem1.5 | ⊢ (abs‘𝑆) = 1 |
Ref | Expression |
---|---|
normlem1 | ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem1.1 | . . . 4 ⊢ 𝑆 ∈ ℂ | |
2 | normlem1.4 | . . . . 5 ⊢ 𝑅 ∈ ℝ | |
3 | 2 | recni 10999 | . . . 4 ⊢ 𝑅 ∈ ℂ |
4 | 1, 3 | mulcli 10992 | . . 3 ⊢ (𝑆 · 𝑅) ∈ ℂ |
5 | normlem1.2 | . . 3 ⊢ 𝐹 ∈ ℋ | |
6 | normlem1.3 | . . 3 ⊢ 𝐺 ∈ ℋ | |
7 | 4, 5, 6 | normlem0 29479 | . 2 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) |
8 | 1, 3 | cjmuli 14910 | . . . . . . . 8 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅)) |
9 | 3 | cjrebi 14895 | . . . . . . . . . 10 ⊢ (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅) |
10 | 2, 9 | mpbi 229 | . . . . . . . . 9 ⊢ (∗‘𝑅) = 𝑅 |
11 | 10 | oveq2i 7278 | . . . . . . . 8 ⊢ ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅) |
12 | 8, 11 | eqtri 2766 | . . . . . . 7 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅) |
13 | 12 | negeqi 11224 | . . . . . 6 ⊢ -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅) |
14 | 1 | cjcli 14890 | . . . . . . 7 ⊢ (∗‘𝑆) ∈ ℂ |
15 | 14, 3 | mulneg2i 11432 | . . . . . 6 ⊢ ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅) |
16 | 13, 15 | eqtr4i 2769 | . . . . 5 ⊢ -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅) |
17 | 16 | oveq1i 7277 | . . . 4 ⊢ (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) |
18 | 17 | oveq2i 7278 | . . 3 ⊢ ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) |
19 | 1, 3 | mulneg2i 11432 | . . . . . 6 ⊢ (𝑆 · -𝑅) = -(𝑆 · 𝑅) |
20 | 19 | eqcomi 2747 | . . . . 5 ⊢ -(𝑆 · 𝑅) = (𝑆 · -𝑅) |
21 | 20 | oveq1i 7277 | . . . 4 ⊢ (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) |
22 | 8 | oveq2i 7278 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) |
23 | 3 | cjcli 14890 | . . . . . . . . 9 ⊢ (∗‘𝑅) ∈ ℂ |
24 | 1, 3, 14, 23 | mul4i 11182 | . . . . . . . 8 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) |
25 | normlem1.5 | . . . . . . . . . . . 12 ⊢ (abs‘𝑆) = 1 | |
26 | 25 | oveq1i 7277 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (1↑2) |
27 | 1 | absvalsqi 15115 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆)) |
28 | sq1 13922 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
29 | 26, 27, 28 | 3eqtr3i 2774 | . . . . . . . . . 10 ⊢ (𝑆 · (∗‘𝑆)) = 1 |
30 | 10 | oveq2i 7278 | . . . . . . . . . 10 ⊢ (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅) |
31 | 29, 30 | oveq12i 7279 | . . . . . . . . 9 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅)) |
32 | 3, 3 | mulcli 10992 | . . . . . . . . . 10 ⊢ (𝑅 · 𝑅) ∈ ℂ |
33 | 32 | mulid2i 10990 | . . . . . . . . 9 ⊢ (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅) |
34 | 31, 33 | eqtri 2766 | . . . . . . . 8 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅) |
35 | 24, 34 | eqtri 2766 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅) |
36 | 22, 35 | eqtri 2766 | . . . . . 6 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅) |
37 | 3 | sqvali 13907 | . . . . . 6 ⊢ (𝑅↑2) = (𝑅 · 𝑅) |
38 | 36, 37 | eqtr4i 2769 | . . . . 5 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2) |
39 | 38 | oveq1i 7277 | . . . 4 ⊢ (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺)) |
40 | 21, 39 | oveq12i 7279 | . . 3 ⊢ ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) |
41 | 18, 40 | oveq12i 7279 | . 2 ⊢ (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
42 | 7, 41 | eqtri 2766 | 1 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ‘cfv 6426 (class class class)co 7267 ℂcc 10879 ℝcr 10880 1c1 10882 + caddc 10884 · cmul 10886 -cneg 11216 2c2 12038 ↑cexp 13792 ∗ccj 14817 abscabs 14955 ℋchba 29289 ·ℎ csm 29291 ·ih csp 29292 −ℎ cmv 29295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 ax-hfvadd 29370 ax-hfvmul 29375 ax-hvmulass 29377 ax-hfi 29449 ax-his1 29452 ax-his2 29453 ax-his3 29454 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-sup 9188 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-seq 13732 df-exp 13793 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-hvsub 29341 |
This theorem is referenced by: normlem4 29483 |
Copyright terms: Public domain | W3C validator |