| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normlem1.1 | ⊢ 𝑆 ∈ ℂ |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ |
| normlem1.3 | ⊢ 𝐺 ∈ ℋ |
| normlem1.4 | ⊢ 𝑅 ∈ ℝ |
| normlem1.5 | ⊢ (abs‘𝑆) = 1 |
| Ref | Expression |
|---|---|
| normlem1 | ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | . . . 4 ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.4 | . . . . 5 ⊢ 𝑅 ∈ ℝ | |
| 3 | 2 | recni 11164 | . . . 4 ⊢ 𝑅 ∈ ℂ |
| 4 | 1, 3 | mulcli 11157 | . . 3 ⊢ (𝑆 · 𝑅) ∈ ℂ |
| 5 | normlem1.2 | . . 3 ⊢ 𝐹 ∈ ℋ | |
| 6 | normlem1.3 | . . 3 ⊢ 𝐺 ∈ ℋ | |
| 7 | 4, 5, 6 | normlem0 31011 | . 2 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) |
| 8 | 1, 3 | cjmuli 15131 | . . . . . . . 8 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · (∗‘𝑅)) |
| 9 | 3 | cjrebi 15116 | . . . . . . . . . 10 ⊢ (𝑅 ∈ ℝ ↔ (∗‘𝑅) = 𝑅) |
| 10 | 2, 9 | mpbi 230 | . . . . . . . . 9 ⊢ (∗‘𝑅) = 𝑅 |
| 11 | 10 | oveq2i 7380 | . . . . . . . 8 ⊢ ((∗‘𝑆) · (∗‘𝑅)) = ((∗‘𝑆) · 𝑅) |
| 12 | 8, 11 | eqtri 2752 | . . . . . . 7 ⊢ (∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · 𝑅) |
| 13 | 12 | negeqi 11390 | . . . . . 6 ⊢ -(∗‘(𝑆 · 𝑅)) = -((∗‘𝑆) · 𝑅) |
| 14 | 1 | cjcli 15111 | . . . . . . 7 ⊢ (∗‘𝑆) ∈ ℂ |
| 15 | 14, 3 | mulneg2i 11601 | . . . . . 6 ⊢ ((∗‘𝑆) · -𝑅) = -((∗‘𝑆) · 𝑅) |
| 16 | 13, 15 | eqtr4i 2755 | . . . . 5 ⊢ -(∗‘(𝑆 · 𝑅)) = ((∗‘𝑆) · -𝑅) |
| 17 | 16 | oveq1i 7379 | . . . 4 ⊢ (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺)) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) |
| 18 | 17 | oveq2i 7380 | . . 3 ⊢ ((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) = ((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) |
| 19 | 1, 3 | mulneg2i 11601 | . . . . . 6 ⊢ (𝑆 · -𝑅) = -(𝑆 · 𝑅) |
| 20 | 19 | eqcomi 2738 | . . . . 5 ⊢ -(𝑆 · 𝑅) = (𝑆 · -𝑅) |
| 21 | 20 | oveq1i 7379 | . . . 4 ⊢ (-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) |
| 22 | 8 | oveq2i 7380 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) |
| 23 | 3 | cjcli 15111 | . . . . . . . . 9 ⊢ (∗‘𝑅) ∈ ℂ |
| 24 | 1, 3, 14, 23 | mul4i 11347 | . . . . . . . 8 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) |
| 25 | normlem1.5 | . . . . . . . . . . . 12 ⊢ (abs‘𝑆) = 1 | |
| 26 | 25 | oveq1i 7379 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (1↑2) |
| 27 | 1 | absvalsqi 15336 | . . . . . . . . . . 11 ⊢ ((abs‘𝑆)↑2) = (𝑆 · (∗‘𝑆)) |
| 28 | sq1 14136 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
| 29 | 26, 27, 28 | 3eqtr3i 2760 | . . . . . . . . . 10 ⊢ (𝑆 · (∗‘𝑆)) = 1 |
| 30 | 10 | oveq2i 7380 | . . . . . . . . . 10 ⊢ (𝑅 · (∗‘𝑅)) = (𝑅 · 𝑅) |
| 31 | 29, 30 | oveq12i 7381 | . . . . . . . . 9 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (1 · (𝑅 · 𝑅)) |
| 32 | 3, 3 | mulcli 11157 | . . . . . . . . . 10 ⊢ (𝑅 · 𝑅) ∈ ℂ |
| 33 | 32 | mullidi 11155 | . . . . . . . . 9 ⊢ (1 · (𝑅 · 𝑅)) = (𝑅 · 𝑅) |
| 34 | 31, 33 | eqtri 2752 | . . . . . . . 8 ⊢ ((𝑆 · (∗‘𝑆)) · (𝑅 · (∗‘𝑅))) = (𝑅 · 𝑅) |
| 35 | 24, 34 | eqtri 2752 | . . . . . . 7 ⊢ ((𝑆 · 𝑅) · ((∗‘𝑆) · (∗‘𝑅))) = (𝑅 · 𝑅) |
| 36 | 22, 35 | eqtri 2752 | . . . . . 6 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅 · 𝑅) |
| 37 | 3 | sqvali 14121 | . . . . . 6 ⊢ (𝑅↑2) = (𝑅 · 𝑅) |
| 38 | 36, 37 | eqtr4i 2755 | . . . . 5 ⊢ ((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) = (𝑅↑2) |
| 39 | 38 | oveq1i 7379 | . . . 4 ⊢ (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)) = ((𝑅↑2) · (𝐺 ·ih 𝐺)) |
| 40 | 21, 39 | oveq12i 7381 | . . 3 ⊢ ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺))) = (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) |
| 41 | 18, 40 | oveq12i 7381 | . 2 ⊢ (((𝐹 ·ih 𝐹) + (-(∗‘(𝑆 · 𝑅)) · (𝐹 ·ih 𝐺))) + ((-(𝑆 · 𝑅) · (𝐺 ·ih 𝐹)) + (((𝑆 · 𝑅) · (∗‘(𝑆 · 𝑅))) · (𝐺 ·ih 𝐺)))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
| 42 | 7, 41 | eqtri 2752 | 1 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 1c1 11045 + caddc 11047 · cmul 11049 -cneg 11382 2c2 12217 ↑cexp 14002 ∗ccj 15038 abscabs 15176 ℋchba 30821 ·ℎ csm 30823 ·ih csp 30824 −ℎ cmv 30827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-hfvadd 30902 ax-hfvmul 30907 ax-hvmulass 30909 ax-hfi 30981 ax-his1 30984 ax-his2 30985 ax-his3 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-hvsub 30873 |
| This theorem is referenced by: normlem4 31015 |
| Copyright terms: Public domain | W3C validator |