Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1228 Structured version   Visualization version   GIF version

Theorem bnj1228 35009
Description: Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1228.1 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Assertion
Ref Expression
bnj1228 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑦,𝐴   𝑤,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑤)   𝐵(𝑥)   𝑅(𝑤)

Proof of Theorem bnj1228
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj69 35008 . 2 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧)
2 nfv 1914 . . . 4 𝑧(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
3 bnj1228.1 . . . . . . 7 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
43nfcii 2882 . . . . . 6 𝑥𝐵
54nfcri 2885 . . . . 5 𝑥 𝑧𝐵
6 nfv 1914 . . . . . 6 𝑥 ¬ 𝑦𝑅𝑧
74, 6nfralw 3288 . . . . 5 𝑥𝑦𝐵 ¬ 𝑦𝑅𝑧
85, 7nfan 1899 . . . 4 𝑥(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧)
9 eleq1w 2812 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
10 breq2 5119 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
1110notbid 318 . . . . . 6 (𝑥 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑧))
1211ralbidv 3158 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
139, 12anbi12d 632 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ↔ (𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧)))
142, 8, 13cbvexv1 2340 . . 3 (∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
15 df-rex 3056 . . 3 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
16 df-rex 3056 . . 3 (∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧 ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
1714, 15, 163bitr4i 303 . 2 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧)
181, 17sylibr 234 1 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1538  wex 1779  wcel 2109  wne 2927  wral 3046  wrex 3055  wss 3922  c0 4304   class class class wbr 5115   FrSe w-bnj15 34690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-reg 9563  ax-inf2 9612
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-om 7851  df-1o 8443  df-bnj17 34685  df-bnj14 34687  df-bnj13 34689  df-bnj15 34691  df-bnj18 34693  df-bnj19 34695
This theorem is referenced by:  bnj1204  35010  bnj1311  35022  bnj1312  35056
  Copyright terms: Public domain W3C validator