![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1228 | Structured version Visualization version GIF version |
Description: Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1228.1 | ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) |
Ref | Expression |
---|---|
bnj1228 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj69 34988 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) | |
2 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
3 | bnj1228.1 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) | |
4 | 3 | nfcii 2897 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 |
5 | 4 | nfcri 2900 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑦𝑅𝑧 | |
7 | 4, 6 | nfralw 3317 | . . . . 5 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧 |
8 | 5, 7 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) |
9 | eleq1w 2827 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
10 | breq2 5170 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑧)) | |
11 | 10 | notbid 318 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑧)) |
12 | 11 | ralbidv 3184 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧)) |
13 | 9, 12 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) ↔ (𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧))) |
14 | 2, 8, 13 | cbvexv1 2348 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧)) |
15 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
16 | df-rex 3077 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧)) | |
17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) |
18 | 1, 17 | sylibr 234 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 ∀wal 1535 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 FrSe w-bnj15 34670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-reg 9663 ax-inf2 9712 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-om 7906 df-1o 8524 df-bnj17 34665 df-bnj14 34667 df-bnj13 34669 df-bnj15 34671 df-bnj18 34673 df-bnj19 34675 |
This theorem is referenced by: bnj1204 34990 bnj1311 35002 bnj1312 35036 |
Copyright terms: Public domain | W3C validator |