| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1228 | Structured version Visualization version GIF version | ||
| Description: Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1228.1 | ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| bnj1228 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj69 35022 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) | |
| 2 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
| 3 | bnj1228.1 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) | |
| 4 | 3 | nfcii 2883 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 |
| 5 | 4 | nfcri 2886 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑦𝑅𝑧 | |
| 7 | 4, 6 | nfralw 3279 | . . . . 5 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧 |
| 8 | 5, 7 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) |
| 9 | eleq1w 2814 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 10 | breq2 5093 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑧)) | |
| 11 | 10 | notbid 318 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑧)) |
| 12 | 11 | ralbidv 3155 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧)) |
| 13 | 9, 12 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) ↔ (𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧))) |
| 14 | 2, 8, 13 | cbvexv1 2342 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧)) |
| 15 | df-rex 3057 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
| 16 | df-rex 3057 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧)) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) |
| 18 | 1, 17 | sylibr 234 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 FrSe w-bnj15 34704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-bnj17 34699 df-bnj14 34701 df-bnj13 34703 df-bnj15 34705 df-bnj18 34707 df-bnj19 34709 |
| This theorem is referenced by: bnj1204 35024 bnj1311 35036 bnj1312 35070 |
| Copyright terms: Public domain | W3C validator |