Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1228 Structured version   Visualization version   GIF version

Theorem bnj1228 34989
Description: Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1228.1 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Assertion
Ref Expression
bnj1228 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑦,𝐴   𝑤,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑤)   𝐵(𝑥)   𝑅(𝑤)

Proof of Theorem bnj1228
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj69 34988 . 2 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧)
2 nfv 1913 . . . 4 𝑧(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
3 bnj1228.1 . . . . . . 7 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
43nfcii 2897 . . . . . 6 𝑥𝐵
54nfcri 2900 . . . . 5 𝑥 𝑧𝐵
6 nfv 1913 . . . . . 6 𝑥 ¬ 𝑦𝑅𝑧
74, 6nfralw 3317 . . . . 5 𝑥𝑦𝐵 ¬ 𝑦𝑅𝑧
85, 7nfan 1898 . . . 4 𝑥(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧)
9 eleq1w 2827 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
10 breq2 5170 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
1110notbid 318 . . . . . 6 (𝑥 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑧))
1211ralbidv 3184 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
139, 12anbi12d 631 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ↔ (𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧)))
142, 8, 13cbvexv1 2348 . . 3 (∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
15 df-rex 3077 . . 3 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
16 df-rex 3077 . . 3 (∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧 ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
1714, 15, 163bitr4i 303 . 2 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧)
181, 17sylibr 234 1 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wal 1535  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166   FrSe w-bnj15 34670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-reg 9663  ax-inf2 9712
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-om 7906  df-1o 8524  df-bnj17 34665  df-bnj14 34667  df-bnj13 34669  df-bnj15 34671  df-bnj18 34673  df-bnj19 34675
This theorem is referenced by:  bnj1204  34990  bnj1311  35002  bnj1312  35036
  Copyright terms: Public domain W3C validator