Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1228 Structured version   Visualization version   GIF version

Theorem bnj1228 31961
Description: Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1228.1 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Assertion
Ref Expression
bnj1228 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑦,𝐴   𝑤,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑤)   𝐵(𝑥)   𝑅(𝑤)

Proof of Theorem bnj1228
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj69 31960 . 2 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧)
2 nfv 1874 . . . 4 𝑧(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
3 bnj1228.1 . . . . . . 7 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
43nfcii 2915 . . . . . 6 𝑥𝐵
54nfcri 2921 . . . . 5 𝑥 𝑧𝐵
6 nfv 1874 . . . . . 6 𝑥 ¬ 𝑦𝑅𝑧
74, 6nfral 3169 . . . . 5 𝑥𝑦𝐵 ¬ 𝑦𝑅𝑧
85, 7nfan 1863 . . . 4 𝑥(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧)
9 eleq1w 2843 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
10 breq2 4930 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
1110notbid 310 . . . . . 6 (𝑥 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑧))
1211ralbidv 3142 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
139, 12anbi12d 622 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ↔ (𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧)))
142, 8, 13cbvexv1 2279 . . 3 (∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
15 df-rex 3089 . . 3 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
16 df-rex 3089 . . 3 (∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧 ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
1714, 15, 163bitr4i 295 . 2 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧)
181, 17sylibr 226 1 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1069  wal 1506  wex 1743  wcel 2051  wne 2962  wral 3083  wrex 3084  wss 3824  c0 4173   class class class wbr 4926   FrSe w-bnj15 31643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-reg 8850  ax-inf2 8897
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-om 7396  df-1o 7904  df-bnj17 31638  df-bnj14 31640  df-bnj13 31642  df-bnj15 31644  df-bnj18 31646  df-bnj19 31648
This theorem is referenced by:  bnj1204  31962  bnj1311  31974  bnj1312  32008
  Copyright terms: Public domain W3C validator