Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1385 Structured version   Visualization version   GIF version

Theorem bnj1385 32712
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1385.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1385.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1385.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
bnj1385.4 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
bnj1385.5 (𝜑′ ↔ ∀𝐴 Fun )
bnj1385.6 𝐸 = (dom ∩ dom 𝑔)
bnj1385.7 (𝜓′ ↔ (𝜑′ ∧ ∀𝐴𝑔𝐴 (𝐸) = (𝑔𝐸)))
Assertion
Ref Expression
bnj1385 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑔,,𝑥   𝐷,   𝑓,𝐸   𝑓,𝑔,,𝑥   𝑔,𝜑′
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔,)   𝜓(𝑥,𝑓,𝑔,)   𝐴(𝑓)   𝐷(𝑥,𝑓,𝑔)   𝐸(𝑥,𝑔,)   𝜑′(𝑥,𝑓,)   𝜓′(𝑥,𝑓,𝑔,)

Proof of Theorem bnj1385
StepHypRef Expression
1 nfv 1918 . . . . . . 7 (𝑓𝐴 → Fun 𝑓)
2 bnj1385.4 . . . . . . . . . 10 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
32nfcii 2890 . . . . . . . . 9 𝑓𝐴
43nfcri 2893 . . . . . . . 8 𝑓 𝐴
5 nfv 1918 . . . . . . . 8 𝑓Fun
64, 5nfim 1900 . . . . . . 7 𝑓(𝐴 → Fun )
7 eleq1w 2821 . . . . . . . 8 (𝑓 = → (𝑓𝐴𝐴))
8 funeq 6438 . . . . . . . 8 (𝑓 = → (Fun 𝑓 ↔ Fun ))
97, 8imbi12d 344 . . . . . . 7 (𝑓 = → ((𝑓𝐴 → Fun 𝑓) ↔ (𝐴 → Fun )))
101, 6, 9cbvalv1 2340 . . . . . 6 (∀𝑓(𝑓𝐴 → Fun 𝑓) ↔ ∀(𝐴 → Fun ))
11 df-ral 3068 . . . . . 6 (∀𝑓𝐴 Fun 𝑓 ↔ ∀𝑓(𝑓𝐴 → Fun 𝑓))
12 df-ral 3068 . . . . . 6 (∀𝐴 Fun ↔ ∀(𝐴 → Fun ))
1310, 11, 123bitr4i 302 . . . . 5 (∀𝑓𝐴 Fun 𝑓 ↔ ∀𝐴 Fun )
14 bnj1385.1 . . . . 5 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
15 bnj1385.5 . . . . 5 (𝜑′ ↔ ∀𝐴 Fun )
1613, 14, 153bitr4i 302 . . . 4 (𝜑𝜑′)
17 nfv 1918 . . . . . 6 (𝑓𝐴 → ∀𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
18 nfv 1918 . . . . . . . 8 𝑓(𝐸) = (𝑔𝐸)
193, 18nfralw 3149 . . . . . . 7 𝑓𝑔𝐴 (𝐸) = (𝑔𝐸)
204, 19nfim 1900 . . . . . 6 𝑓(𝐴 → ∀𝑔𝐴 (𝐸) = (𝑔𝐸))
21 dmeq 5801 . . . . . . . . . . . . 13 (𝑓 = → dom 𝑓 = dom )
2221ineq1d 4142 . . . . . . . . . . . 12 (𝑓 = → (dom 𝑓 ∩ dom 𝑔) = (dom ∩ dom 𝑔))
23 bnj1385.2 . . . . . . . . . . . 12 𝐷 = (dom 𝑓 ∩ dom 𝑔)
24 bnj1385.6 . . . . . . . . . . . 12 𝐸 = (dom ∩ dom 𝑔)
2522, 23, 243eqtr4g 2804 . . . . . . . . . . 11 (𝑓 = 𝐷 = 𝐸)
2625reseq2d 5880 . . . . . . . . . 10 (𝑓 = → (𝑓𝐷) = (𝑓𝐸))
27 reseq1 5874 . . . . . . . . . 10 (𝑓 = → (𝑓𝐸) = (𝐸))
2826, 27eqtrd 2778 . . . . . . . . 9 (𝑓 = → (𝑓𝐷) = (𝐸))
2925reseq2d 5880 . . . . . . . . 9 (𝑓 = → (𝑔𝐷) = (𝑔𝐸))
3028, 29eqeq12d 2754 . . . . . . . 8 (𝑓 = → ((𝑓𝐷) = (𝑔𝐷) ↔ (𝐸) = (𝑔𝐸)))
3130ralbidv 3120 . . . . . . 7 (𝑓 = → (∀𝑔𝐴 (𝑓𝐷) = (𝑔𝐷) ↔ ∀𝑔𝐴 (𝐸) = (𝑔𝐸)))
327, 31imbi12d 344 . . . . . 6 (𝑓 = → ((𝑓𝐴 → ∀𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)) ↔ (𝐴 → ∀𝑔𝐴 (𝐸) = (𝑔𝐸))))
3317, 20, 32cbvalv1 2340 . . . . 5 (∀𝑓(𝑓𝐴 → ∀𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)) ↔ ∀(𝐴 → ∀𝑔𝐴 (𝐸) = (𝑔𝐸)))
34 df-ral 3068 . . . . 5 (∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷) ↔ ∀𝑓(𝑓𝐴 → ∀𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
35 df-ral 3068 . . . . 5 (∀𝐴𝑔𝐴 (𝐸) = (𝑔𝐸) ↔ ∀(𝐴 → ∀𝑔𝐴 (𝐸) = (𝑔𝐸)))
3633, 34, 353bitr4i 302 . . . 4 (∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷) ↔ ∀𝐴𝑔𝐴 (𝐸) = (𝑔𝐸))
3716, 36anbi12i 626 . . 3 ((𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)) ↔ (𝜑′ ∧ ∀𝐴𝑔𝐴 (𝐸) = (𝑔𝐸)))
38 bnj1385.3 . . 3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
39 bnj1385.7 . . 3 (𝜓′ ↔ (𝜑′ ∧ ∀𝐴𝑔𝐴 (𝐸) = (𝑔𝐸)))
4037, 38, 393bitr4i 302 . 2 (𝜓𝜓′)
4115, 24, 39bnj1383 32711 . 2 (𝜓′ → Fun 𝐴)
4240, 41sylbi 216 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  wral 3063  cin 3882   cuni 4836  dom cdm 5580  cres 5582  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  bnj1386  32713
  Copyright terms: Public domain W3C validator