Proof of Theorem bnj1385
Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎℎ(𝑓 ∈ 𝐴 → Fun 𝑓) |
2 | | bnj1385.4 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ∀𝑓 𝑥 ∈ 𝐴) |
3 | 2 | nfcii 2890 |
. . . . . . . . 9
⊢
Ⅎ𝑓𝐴 |
4 | 3 | nfcri 2893 |
. . . . . . . 8
⊢
Ⅎ𝑓 ℎ ∈ 𝐴 |
5 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑓Fun ℎ |
6 | 4, 5 | nfim 1900 |
. . . . . . 7
⊢
Ⅎ𝑓(ℎ ∈ 𝐴 → Fun ℎ) |
7 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑓 = ℎ → (𝑓 ∈ 𝐴 ↔ ℎ ∈ 𝐴)) |
8 | | funeq 6438 |
. . . . . . . 8
⊢ (𝑓 = ℎ → (Fun 𝑓 ↔ Fun ℎ)) |
9 | 7, 8 | imbi12d 344 |
. . . . . . 7
⊢ (𝑓 = ℎ → ((𝑓 ∈ 𝐴 → Fun 𝑓) ↔ (ℎ ∈ 𝐴 → Fun ℎ))) |
10 | 1, 6, 9 | cbvalv1 2340 |
. . . . . 6
⊢
(∀𝑓(𝑓 ∈ 𝐴 → Fun 𝑓) ↔ ∀ℎ(ℎ ∈ 𝐴 → Fun ℎ)) |
11 | | df-ral 3068 |
. . . . . 6
⊢
(∀𝑓 ∈
𝐴 Fun 𝑓 ↔ ∀𝑓(𝑓 ∈ 𝐴 → Fun 𝑓)) |
12 | | df-ral 3068 |
. . . . . 6
⊢
(∀ℎ ∈
𝐴 Fun ℎ ↔ ∀ℎ(ℎ ∈ 𝐴 → Fun ℎ)) |
13 | 10, 11, 12 | 3bitr4i 302 |
. . . . 5
⊢
(∀𝑓 ∈
𝐴 Fun 𝑓 ↔ ∀ℎ ∈ 𝐴 Fun ℎ) |
14 | | bnj1385.1 |
. . . . 5
⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) |
15 | | bnj1385.5 |
. . . . 5
⊢ (𝜑′ ↔ ∀ℎ ∈ 𝐴 Fun ℎ) |
16 | 13, 14, 15 | 3bitr4i 302 |
. . . 4
⊢ (𝜑 ↔ 𝜑′) |
17 | | nfv 1918 |
. . . . . 6
⊢
Ⅎℎ(𝑓 ∈ 𝐴 → ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷)) |
18 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑓(ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸) |
19 | 3, 18 | nfralw 3149 |
. . . . . . 7
⊢
Ⅎ𝑓∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸) |
20 | 4, 19 | nfim 1900 |
. . . . . 6
⊢
Ⅎ𝑓(ℎ ∈ 𝐴 → ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸)) |
21 | | dmeq 5801 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ℎ → dom 𝑓 = dom ℎ) |
22 | 21 | ineq1d 4142 |
. . . . . . . . . . . 12
⊢ (𝑓 = ℎ → (dom 𝑓 ∩ dom 𝑔) = (dom ℎ ∩ dom 𝑔)) |
23 | | bnj1385.2 |
. . . . . . . . . . . 12
⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) |
24 | | bnj1385.6 |
. . . . . . . . . . . 12
⊢ 𝐸 = (dom ℎ ∩ dom 𝑔) |
25 | 22, 23, 24 | 3eqtr4g 2804 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → 𝐷 = 𝐸) |
26 | 25 | reseq2d 5880 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (𝑓 ↾ 𝐷) = (𝑓 ↾ 𝐸)) |
27 | | reseq1 5874 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (𝑓 ↾ 𝐸) = (ℎ ↾ 𝐸)) |
28 | 26, 27 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑓 ↾ 𝐷) = (ℎ ↾ 𝐸)) |
29 | 25 | reseq2d 5880 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑔 ↾ 𝐷) = (𝑔 ↾ 𝐸)) |
30 | 28, 29 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑓 = ℎ → ((𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷) ↔ (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸))) |
31 | 30 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑓 = ℎ → (∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷) ↔ ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸))) |
32 | 7, 31 | imbi12d 344 |
. . . . . 6
⊢ (𝑓 = ℎ → ((𝑓 ∈ 𝐴 → ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷)) ↔ (ℎ ∈ 𝐴 → ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸)))) |
33 | 17, 20, 32 | cbvalv1 2340 |
. . . . 5
⊢
(∀𝑓(𝑓 ∈ 𝐴 → ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷)) ↔ ∀ℎ(ℎ ∈ 𝐴 → ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸))) |
34 | | df-ral 3068 |
. . . . 5
⊢
(∀𝑓 ∈
𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷) ↔ ∀𝑓(𝑓 ∈ 𝐴 → ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) |
35 | | df-ral 3068 |
. . . . 5
⊢
(∀ℎ ∈
𝐴 ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸) ↔ ∀ℎ(ℎ ∈ 𝐴 → ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸))) |
36 | 33, 34, 35 | 3bitr4i 302 |
. . . 4
⊢
(∀𝑓 ∈
𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷) ↔ ∀ℎ ∈ 𝐴 ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸)) |
37 | 16, 36 | anbi12i 626 |
. . 3
⊢ ((𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷)) ↔ (𝜑′ ∧ ∀ℎ ∈ 𝐴 ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸))) |
38 | | bnj1385.3 |
. . 3
⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) |
39 | | bnj1385.7 |
. . 3
⊢ (𝜓′ ↔ (𝜑′ ∧ ∀ℎ ∈ 𝐴 ∀𝑔 ∈ 𝐴 (ℎ ↾ 𝐸) = (𝑔 ↾ 𝐸))) |
40 | 37, 38, 39 | 3bitr4i 302 |
. 2
⊢ (𝜓 ↔ 𝜓′) |
41 | 15, 24, 39 | bnj1383 32711 |
. 2
⊢ (𝜓′ → Fun ∪ 𝐴) |
42 | 40, 41 | sylbi 216 |
1
⊢ (𝜓 → Fun ∪ 𝐴) |