Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1534 Structured version   Visualization version   GIF version

Theorem bnj1534 34846
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1534.1 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
bnj1534.2 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
Assertion
Ref Expression
bnj1534 𝐷 = {𝑧𝐴 ∣ (𝐹𝑧) ≠ (𝐻𝑧)}
Distinct variable groups:   𝑤,𝐴,𝑥,𝑧   𝑤,𝐹,𝑧   𝑤,𝐻,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑥,𝑧,𝑤)   𝐹(𝑥)

Proof of Theorem bnj1534
StepHypRef Expression
1 bnj1534.1 . 2 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
2 nfcv 2903 . . 3 𝑥𝐴
3 nfcv 2903 . . 3 𝑧𝐴
4 nfv 1912 . . 3 𝑧(𝐹𝑥) ≠ (𝐻𝑥)
5 bnj1534.2 . . . . . 6 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
65nfcii 2892 . . . . 5 𝑥𝐹
7 nfcv 2903 . . . . 5 𝑥𝑧
86, 7nffv 6917 . . . 4 𝑥(𝐹𝑧)
9 nfcv 2903 . . . 4 𝑥(𝐻𝑧)
108, 9nfne 3041 . . 3 𝑥(𝐹𝑧) ≠ (𝐻𝑧)
11 fveq2 6907 . . . 4 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
12 fveq2 6907 . . . 4 (𝑥 = 𝑧 → (𝐻𝑥) = (𝐻𝑧))
1311, 12neeq12d 3000 . . 3 (𝑥 = 𝑧 → ((𝐹𝑥) ≠ (𝐻𝑥) ↔ (𝐹𝑧) ≠ (𝐻𝑧)))
142, 3, 4, 10, 13cbvrabw 3471 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)} = {𝑧𝐴 ∣ (𝐹𝑧) ≠ (𝐻𝑧)}
151, 14eqtri 2763 1 𝐷 = {𝑧𝐴 ∣ (𝐹𝑧) ≠ (𝐻𝑧)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wcel 2106  wne 2938  {crab 3433  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571
This theorem is referenced by:  bnj1523  35064
  Copyright terms: Public domain W3C validator