Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1534 Structured version   Visualization version   GIF version

Theorem bnj1534 32812
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1534.1 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
bnj1534.2 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
Assertion
Ref Expression
bnj1534 𝐷 = {𝑧𝐴 ∣ (𝐹𝑧) ≠ (𝐻𝑧)}
Distinct variable groups:   𝑤,𝐴,𝑥,𝑧   𝑤,𝐹,𝑧   𝑤,𝐻,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑥,𝑧,𝑤)   𝐹(𝑥)

Proof of Theorem bnj1534
StepHypRef Expression
1 bnj1534.1 . 2 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
2 nfcv 2908 . . 3 𝑥𝐴
3 nfcv 2908 . . 3 𝑧𝐴
4 nfv 1920 . . 3 𝑧(𝐹𝑥) ≠ (𝐻𝑥)
5 bnj1534.2 . . . . . 6 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
65nfcii 2892 . . . . 5 𝑥𝐹
7 nfcv 2908 . . . . 5 𝑥𝑧
86, 7nffv 6778 . . . 4 𝑥(𝐹𝑧)
9 nfcv 2908 . . . 4 𝑥(𝐻𝑧)
108, 9nfne 3046 . . 3 𝑥(𝐹𝑧) ≠ (𝐻𝑧)
11 fveq2 6768 . . . 4 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
12 fveq2 6768 . . . 4 (𝑥 = 𝑧 → (𝐻𝑥) = (𝐻𝑧))
1311, 12neeq12d 3006 . . 3 (𝑥 = 𝑧 → ((𝐹𝑥) ≠ (𝐻𝑥) ↔ (𝐹𝑧) ≠ (𝐻𝑧)))
142, 3, 4, 10, 13cbvrabw 3422 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)} = {𝑧𝐴 ∣ (𝐹𝑧) ≠ (𝐻𝑧)}
151, 14eqtri 2767 1 𝐷 = {𝑧𝐴 ∣ (𝐹𝑧) ≠ (𝐻𝑧)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wcel 2109  wne 2944  {crab 3069  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438
This theorem is referenced by:  bnj1523  33030
  Copyright terms: Public domain W3C validator