| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1534 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1534.1 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} |
| bnj1534.2 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| bnj1534 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1534.1 | . 2 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} | |
| 2 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑧𝐴 | |
| 4 | nfv 1914 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) ≠ (𝐻‘𝑥) | |
| 5 | bnj1534.2 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
| 6 | 5 | nfcii 2888 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
| 7 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 8 | 6, 7 | nffv 6891 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 9 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥(𝐻‘𝑧) | |
| 10 | 8, 9 | nfne 3034 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) ≠ (𝐻‘𝑧) |
| 11 | fveq2 6881 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
| 12 | fveq2 6881 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐻‘𝑥) = (𝐻‘𝑧)) | |
| 13 | 11, 12 | neeq12d 2994 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ≠ (𝐻‘𝑥) ↔ (𝐹‘𝑧) ≠ (𝐻‘𝑧))) |
| 14 | 2, 3, 4, 10, 13 | cbvrabw 3457 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
| 15 | 1, 14 | eqtri 2759 | 1 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {crab 3420 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: bnj1523 35107 |
| Copyright terms: Public domain | W3C validator |