Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1534 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1534.1 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} |
bnj1534.2 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
Ref | Expression |
---|---|
bnj1534 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1534.1 | . 2 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} | |
2 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑧𝐴 | |
4 | nfv 1920 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) ≠ (𝐻‘𝑥) | |
5 | bnj1534.2 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
6 | 5 | nfcii 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
7 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
8 | 6, 7 | nffv 6778 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
9 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥(𝐻‘𝑧) | |
10 | 8, 9 | nfne 3046 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) ≠ (𝐻‘𝑧) |
11 | fveq2 6768 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
12 | fveq2 6768 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐻‘𝑥) = (𝐻‘𝑧)) | |
13 | 11, 12 | neeq12d 3006 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ≠ (𝐻‘𝑥) ↔ (𝐹‘𝑧) ≠ (𝐻‘𝑧))) |
14 | 2, 3, 4, 10, 13 | cbvrabw 3422 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
15 | 1, 14 | eqtri 2767 | 1 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 {crab 3069 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 |
This theorem is referenced by: bnj1523 33030 |
Copyright terms: Public domain | W3C validator |