Step | Hyp | Ref
| Expression |
1 | | cardon 9633 |
. . . . . . . . 9
⊢
(card‘𝐴)
∈ On |
2 | | eleq1 2826 |
. . . . . . . . 9
⊢
((card‘𝐴) =
𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) |
3 | 1, 2 | mpbii 232 |
. . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ On) |
4 | | alephle 9775 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) |
5 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴)) |
6 | 5 | sseq2d 3949 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴))) |
7 | 6 | rspcev 3552 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐴 ⊆ (ℵ‘𝐴)) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)) |
8 | 4, 7 | mpdan 683 |
. . . . . . . 8
⊢ (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)) |
9 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐴 |
10 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥ℵ |
11 | | nfrab1 3310 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} |
12 | 11 | nfint 4886 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} |
13 | 10, 12 | nffv 6766 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(ℵ‘∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) |
14 | 9, 13 | nfss 3909 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝐴 ⊆ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) |
15 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = ∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → (ℵ‘𝑥) = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
16 | 15 | sseq2d 3949 |
. . . . . . . . 9
⊢ (𝑥 = ∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
17 | 14, 16 | onminsb 7621 |
. . . . . . . 8
⊢
(∃𝑥 ∈ On
𝐴 ⊆
(ℵ‘𝑥) →
𝐴 ⊆
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) |
18 | 3, 8, 17 | 3syl 18 |
. . . . . . 7
⊢
((card‘𝐴) =
𝐴 → 𝐴 ⊆ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
19 | 18 | a1i 11 |
. . . . . 6
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ → ((card‘𝐴) = 𝐴 → 𝐴 ⊆ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
20 | | fveq2 6756 |
. . . . . . . . 9
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ → (ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) =
(ℵ‘∅)) |
21 | | aleph0 9753 |
. . . . . . . . 9
⊢
(ℵ‘∅) = ω |
22 | 20, 21 | eqtrdi 2795 |
. . . . . . . 8
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ → (ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = ω) |
23 | 22 | sseq1d 3948 |
. . . . . . 7
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ → ((ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴 ↔ ω ⊆ 𝐴)) |
24 | 23 | biimprd 247 |
. . . . . 6
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ → (ω ⊆ 𝐴 → (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ⊆
𝐴)) |
25 | 19, 24 | anim12d 608 |
. . . . 5
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ → (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ∧
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴))) |
26 | | eqss 3932 |
. . . . 5
⊢ (𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ↔
(𝐴 ⊆
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ⊆
𝐴)) |
27 | 25, 26 | syl6ibr 251 |
. . . 4
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ → (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → 𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
28 | 27 | com12 32 |
. . 3
⊢
(((card‘𝐴) =
𝐴 ∧ ω ⊆
𝐴) → (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ → 𝐴 =
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
29 | 28 | ancoms 458 |
. 2
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ → 𝐴 =
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
30 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) |
31 | 30 | sseq2d 3949 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝑦))) |
32 | 31 | onnminsb 7626 |
. . . . . . . . 9
⊢ (𝑦 ∈ On → (𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} →
¬ 𝐴 ⊆
(ℵ‘𝑦))) |
33 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
34 | 33 | sucid 6330 |
. . . . . . . . . 10
⊢ 𝑦 ∈ suc 𝑦 |
35 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦 → (𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ↔
𝑦 ∈ suc 𝑦)) |
36 | 34, 35 | mpbiri 257 |
. . . . . . . . 9
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦 → 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) |
37 | 32, 36 | impel 505 |
. . . . . . . 8
⊢ ((𝑦 ∈ On ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦) → ¬ 𝐴 ⊆ (ℵ‘𝑦)) |
38 | 37 | adantl 481 |
. . . . . . 7
⊢
(((card‘𝐴) =
𝐴 ∧ (𝑦 ∈ On ∧ ∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → ¬ 𝐴 ⊆ (ℵ‘𝑦)) |
39 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦 →
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (ℵ‘suc 𝑦)) |
40 | | alephsuc 9755 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ On →
(ℵ‘suc 𝑦) =
(har‘(ℵ‘𝑦))) |
41 | 39, 40 | sylan9eqr 2801 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ On ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦) →
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (har‘(ℵ‘𝑦))) |
42 | 41 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑦 ∈ On ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦) → (𝐴 ∈ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ↔
𝐴 ∈
(har‘(ℵ‘𝑦)))) |
43 | 42 | biimpd 228 |
. . . . . . . 8
⊢ ((𝑦 ∈ On ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦) → (𝐴 ∈ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
𝐴 ∈
(har‘(ℵ‘𝑦)))) |
44 | | elharval 9250 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(har‘(ℵ‘𝑦)) ↔ (𝐴 ∈ On ∧ 𝐴 ≼ (ℵ‘𝑦))) |
45 | 44 | simprbi 496 |
. . . . . . . . 9
⊢ (𝐴 ∈
(har‘(ℵ‘𝑦)) → 𝐴 ≼ (ℵ‘𝑦)) |
46 | | onenon 9638 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → 𝐴 ∈ dom
card) |
47 | 3, 46 | syl 17 |
. . . . . . . . . . 11
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ dom card) |
48 | | alephon 9756 |
. . . . . . . . . . . 12
⊢
(ℵ‘𝑦)
∈ On |
49 | | onenon 9638 |
. . . . . . . . . . . 12
⊢
((ℵ‘𝑦)
∈ On → (ℵ‘𝑦) ∈ dom card) |
50 | 48, 49 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(ℵ‘𝑦)
∈ dom card |
51 | | carddom2 9666 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom card ∧
(ℵ‘𝑦) ∈
dom card) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
52 | 47, 50, 51 | sylancl 585 |
. . . . . . . . . 10
⊢
((card‘𝐴) =
𝐴 → ((card‘𝐴) ⊆
(card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
53 | | sseq1 3942 |
. . . . . . . . . . 11
⊢
((card‘𝐴) =
𝐴 → ((card‘𝐴) ⊆
(card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (card‘(ℵ‘𝑦)))) |
54 | | alephcard 9757 |
. . . . . . . . . . . 12
⊢
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦) |
55 | 54 | sseq2i 3946 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆
(card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦)) |
56 | 53, 55 | bitrdi 286 |
. . . . . . . . . 10
⊢
((card‘𝐴) =
𝐴 → ((card‘𝐴) ⊆
(card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦))) |
57 | 52, 56 | bitr3d 280 |
. . . . . . . . 9
⊢
((card‘𝐴) =
𝐴 → (𝐴 ≼ (ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘𝑦))) |
58 | 45, 57 | syl5ib 243 |
. . . . . . . 8
⊢
((card‘𝐴) =
𝐴 → (𝐴 ∈ (har‘(ℵ‘𝑦)) → 𝐴 ⊆ (ℵ‘𝑦))) |
59 | 43, 58 | sylan9r 508 |
. . . . . . 7
⊢
(((card‘𝐴) =
𝐴 ∧ (𝑦 ∈ On ∧ ∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → (𝐴 ∈ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
𝐴 ⊆
(ℵ‘𝑦))) |
60 | 38, 59 | mtod 197 |
. . . . . 6
⊢
(((card‘𝐴) =
𝐴 ∧ (𝑦 ∈ On ∧ ∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → ¬ 𝐴 ∈ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
61 | 60 | rexlimdvaa 3213 |
. . . . 5
⊢
((card‘𝐴) =
𝐴 → (∃𝑦 ∈ On ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦 → ¬ 𝐴 ∈ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
62 | | onintrab2 7624 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈ On
𝐴 ⊆
(ℵ‘𝑥) ↔
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) |
63 | 8, 62 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) |
64 | | onelon 6276 |
. . . . . . . . . . . . 13
⊢ ((∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On ∧ 𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
𝑦 ∈
On) |
65 | 63, 64 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
𝑦 ∈
On) |
66 | 32 | adantld 490 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
¬ 𝐴 ⊆
(ℵ‘𝑦))) |
67 | 65, 66 | mpcom 38 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
¬ 𝐴 ⊆
(ℵ‘𝑦)) |
68 | 48 | onelssi 6360 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (ℵ‘𝑦) → 𝐴 ⊆ (ℵ‘𝑦)) |
69 | 67, 68 | nsyl 140 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
¬ 𝐴 ∈
(ℵ‘𝑦)) |
70 | 69 | nrexdv 3197 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → ¬
∃𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦)) |
71 | 70 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
¬ ∃𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦)) |
72 | | alephlim 9754 |
. . . . . . . . . . 11
⊢ ((∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On ∧ Lim ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) =
∪ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦)) |
73 | 63, 72 | sylan 579 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = ∪
𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}
(ℵ‘𝑦)) |
74 | 73 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
(𝐴 ∈
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ 𝐴 ∈ ∪
𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}
(ℵ‘𝑦))) |
75 | | eliun 4925 |
. . . . . . . . 9
⊢ (𝐴 ∈ ∪ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦) ↔ ∃𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦)) |
76 | 74, 75 | bitrdi 286 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
(𝐴 ∈
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ ∃𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))) |
77 | 71, 76 | mtbird 324 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
¬ 𝐴 ∈
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) |
78 | 77 | ex 412 |
. . . . . 6
⊢ (𝐴 ∈ On → (Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} →
¬ 𝐴 ∈
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
79 | 3, 78 | syl 17 |
. . . . 5
⊢
((card‘𝐴) =
𝐴 → (Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} →
¬ 𝐴 ∈
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
80 | 61, 79 | jaod 855 |
. . . 4
⊢
((card‘𝐴) =
𝐴 → ((∃𝑦 ∈ On ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦 ∨ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
¬ 𝐴 ∈
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
81 | 8, 17 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
82 | | alephon 9756 |
. . . . . . 7
⊢
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∈ On |
83 | | onsseleq 6292 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∈ On) → (𝐴 ⊆ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ↔
(𝐴 ∈
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})))) |
84 | 82, 83 | mpan2 687 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐴 ⊆ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ↔
(𝐴 ∈
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})))) |
85 | 81, 84 | mpbid 231 |
. . . . 5
⊢ (𝐴 ∈ On → (𝐴 ∈ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ∨
𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
86 | 85 | ord 860 |
. . . 4
⊢ (𝐴 ∈ On → (¬ 𝐴 ∈ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
87 | 3, 80, 86 | sylsyld 61 |
. . 3
⊢
((card‘𝐴) =
𝐴 → ((∃𝑦 ∈ On ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦 ∨ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
88 | 87 | adantl 481 |
. 2
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → ((∃𝑦 ∈ On ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦 ∨ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) →
𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
89 | | eloni 6261 |
. . . . 5
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On → Ord ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) |
90 | | ordzsl 7667 |
. . . . . 6
⊢ (Ord
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ ∃𝑦 ∈ On ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦 ∨ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
91 | | 3orass 1088 |
. . . . . 6
⊢ ((∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ ∨ ∃𝑦
∈ On ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ ∨ (∃𝑦
∈ On ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
92 | 90, 91 | bitri 274 |
. . . . 5
⊢ (Ord
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} = suc
𝑦 ∨ Lim ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
93 | 89, 92 | sylib 217 |
. . . 4
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On → (∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On ∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
94 | 3, 63, 93 | 3syl 18 |
. . 3
⊢
((card‘𝐴) =
𝐴 → (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ ∨ (∃𝑦
∈ On ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
95 | 94 | adantl 481 |
. 2
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} =
∅ ∨ (∃𝑦
∈ On ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
96 | 29, 88, 95 | mpjaod 856 |
1
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |