MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardaleph Structured version   Visualization version   GIF version

Theorem cardaleph 9361
Description: Given any transfinite cardinal number 𝐴, there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardaleph ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardaleph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardon 9219 . . . . . . . . 9 (card‘𝐴) ∈ On
2 eleq1 2870 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 234 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 alephle 9360 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))
5 fveq2 6538 . . . . . . . . . . 11 (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴))
65sseq2d 3920 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴)))
76rspcev 3559 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐴 ⊆ (ℵ‘𝐴)) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
84, 7mpdan 683 . . . . . . . 8 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
9 nfcv 2949 . . . . . . . . . 10 𝑥𝐴
10 nfcv 2949 . . . . . . . . . . 11 𝑥
11 nfrab1 3344 . . . . . . . . . . . 12 𝑥{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
1211nfint 4792 . . . . . . . . . . 11 𝑥 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
1310, 12nffv 6548 . . . . . . . . . 10 𝑥(ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
149, 13nfss 3882 . . . . . . . . 9 𝑥 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
15 fveq2 6538 . . . . . . . . . 10 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → (ℵ‘𝑥) = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
1615sseq2d 3920 . . . . . . . . 9 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
1714, 16onminsb 7370 . . . . . . . 8 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
183, 8, 173syl 18 . . . . . . 7 ((card‘𝐴) = 𝐴𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
1918a1i 11 . . . . . 6 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → ((card‘𝐴) = 𝐴𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
20 fveq2 6538 . . . . . . . . 9 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (ℵ‘∅))
21 aleph0 9338 . . . . . . . . 9 (ℵ‘∅) = ω
2220, 21syl6eq 2847 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = ω)
2322sseq1d 3919 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → ((ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴 ↔ ω ⊆ 𝐴))
2423biimprd 249 . . . . . 6 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (ω ⊆ 𝐴 → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴))
2519, 24anim12d 608 . . . . 5 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴)))
26 eqss 3904 . . . . 5 (𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴))
2725, 26syl6ibr 253 . . . 4 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
2827com12 32 . . 3 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
2928ancoms 459 . 2 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
30 fveq2 6538 . . . . . . . . . . 11 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
3130sseq2d 3920 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
3231onnminsb 7375 . . . . . . . . 9 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ¬ 𝐴 ⊆ (ℵ‘𝑦)))
33 vex 3440 . . . . . . . . . . 11 𝑦 ∈ V
3433sucid 6145 . . . . . . . . . 10 𝑦 ∈ suc 𝑦
35 eleq2 2871 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → (𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ 𝑦 ∈ suc 𝑦))
3634, 35mpbiri 259 . . . . . . . . 9 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
3732, 36impel 506 . . . . . . . 8 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → ¬ 𝐴 ⊆ (ℵ‘𝑦))
3837adantl 482 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ (𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → ¬ 𝐴 ⊆ (ℵ‘𝑦))
39 fveq2 6538 . . . . . . . . . . 11 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (ℵ‘suc 𝑦))
40 alephsuc 9340 . . . . . . . . . . 11 (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦)))
4139, 40sylan9eqr 2853 . . . . . . . . . 10 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (har‘(ℵ‘𝑦)))
4241eleq2d 2868 . . . . . . . . 9 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ 𝐴 ∈ (har‘(ℵ‘𝑦))))
4342biimpd 230 . . . . . . . 8 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 ∈ (har‘(ℵ‘𝑦))))
44 elharval 8873 . . . . . . . . . 10 (𝐴 ∈ (har‘(ℵ‘𝑦)) ↔ (𝐴 ∈ On ∧ 𝐴 ≼ (ℵ‘𝑦)))
4544simprbi 497 . . . . . . . . 9 (𝐴 ∈ (har‘(ℵ‘𝑦)) → 𝐴 ≼ (ℵ‘𝑦))
46 onenon 9224 . . . . . . . . . . . 12 (𝐴 ∈ On → 𝐴 ∈ dom card)
473, 46syl 17 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴𝐴 ∈ dom card)
48 alephon 9341 . . . . . . . . . . . 12 (ℵ‘𝑦) ∈ On
49 onenon 9224 . . . . . . . . . . . 12 ((ℵ‘𝑦) ∈ On → (ℵ‘𝑦) ∈ dom card)
5048, 49ax-mp 5 . . . . . . . . . . 11 (ℵ‘𝑦) ∈ dom card
51 carddom2 9252 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ (ℵ‘𝑦) ∈ dom card) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦)))
5247, 50, 51sylancl 586 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦)))
53 sseq1 3913 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (card‘(ℵ‘𝑦))))
54 alephcard 9342 . . . . . . . . . . . 12 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)
5554sseq2i 3917 . . . . . . . . . . 11 (𝐴 ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦))
5653, 55syl6bb 288 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
5752, 56bitr3d 282 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → (𝐴 ≼ (ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
5845, 57syl5ib 245 . . . . . . . 8 ((card‘𝐴) = 𝐴 → (𝐴 ∈ (har‘(ℵ‘𝑦)) → 𝐴 ⊆ (ℵ‘𝑦)))
5943, 58sylan9r 509 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ (𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 ⊆ (ℵ‘𝑦)))
6038, 59mtod 199 . . . . . 6 (((card‘𝐴) = 𝐴 ∧ (𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
6160rexlimdvaa 3248 . . . . 5 ((card‘𝐴) = 𝐴 → (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
62 onintrab2 7373 . . . . . . . . . . . . . 14 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) ↔ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
638, 62sylib 219 . . . . . . . . . . . . 13 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
64 onelon 6091 . . . . . . . . . . . . 13 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝑦 ∈ On)
6563, 64sylan 580 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝑦 ∈ On)
6632adantld 491 . . . . . . . . . . . 12 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ⊆ (ℵ‘𝑦)))
6765, 66mpcom 38 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ⊆ (ℵ‘𝑦))
6848onelssi 6174 . . . . . . . . . . 11 (𝐴 ∈ (ℵ‘𝑦) → 𝐴 ⊆ (ℵ‘𝑦))
6967, 68nsyl 142 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ∈ (ℵ‘𝑦))
7069nrexdv 3233 . . . . . . . . 9 (𝐴 ∈ On → ¬ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))
7170adantr 481 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))
72 alephlim 9339 . . . . . . . . . . 11 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦))
7363, 72sylan 580 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦))
7473eleq2d 2868 . . . . . . . . 9 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ 𝐴 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦)))
75 eliun 4829 . . . . . . . . 9 (𝐴 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦) ↔ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))
7674, 75syl6bb 288 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦)))
7771, 76mtbird 326 . . . . . . 7 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
7877ex 413 . . . . . 6 (𝐴 ∈ On → (Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
793, 78syl 17 . . . . 5 ((card‘𝐴) = 𝐴 → (Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
8061, 79jaod 854 . . . 4 ((card‘𝐴) = 𝐴 → ((∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
818, 17syl 17 . . . . . 6 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
82 alephon 9341 . . . . . . 7 (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∈ On
83 onsseleq 6107 . . . . . . 7 ((𝐴 ∈ On ∧ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∈ On) → (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
8482, 83mpan2 687 . . . . . 6 (𝐴 ∈ On → (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
8581, 84mpbid 233 . . . . 5 (𝐴 ∈ On → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
8685ord 859 . . . 4 (𝐴 ∈ On → (¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
873, 80, 86sylsyld 61 . . 3 ((card‘𝐴) = 𝐴 → ((∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
8887adantl 482 . 2 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ((∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
89 eloni 6076 . . . . 5 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
90 ordzsl 7416 . . . . . 6 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ ∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
91 3orass 1083 . . . . . 6 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ ∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9290, 91bitri 276 . . . . 5 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9389, 92sylib 219 . . . 4 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
943, 63, 933syl 18 . . 3 ((card‘𝐴) = 𝐴 → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9594adantl 482 . 2 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9629, 88, 95mpjaod 855 1 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3o 1079   = wceq 1522  wcel 2081  wrex 3106  {crab 3109  wss 3859  c0 4211   cint 4782   ciun 4825   class class class wbr 4962  dom cdm 5443  Ord word 6065  Oncon0 6066  Lim wlim 6067  suc csuc 6068  cfv 6225  ωcom 7436  cdom 8355  harchar 8866  cardccrd 9210  cale 9211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-oi 8820  df-har 8868  df-card 9214  df-aleph 9215
This theorem is referenced by:  cardalephex  9362  tskcard  10049
  Copyright terms: Public domain W3C validator