MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardaleph Structured version   Visualization version   GIF version

Theorem cardaleph 9776
Description: Given any transfinite cardinal number 𝐴, there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardaleph ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardaleph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardon 9633 . . . . . . . . 9 (card‘𝐴) ∈ On
2 eleq1 2826 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 232 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 alephle 9775 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))
5 fveq2 6756 . . . . . . . . . . 11 (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴))
65sseq2d 3949 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴)))
76rspcev 3552 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐴 ⊆ (ℵ‘𝐴)) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
84, 7mpdan 683 . . . . . . . 8 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
9 nfcv 2906 . . . . . . . . . 10 𝑥𝐴
10 nfcv 2906 . . . . . . . . . . 11 𝑥
11 nfrab1 3310 . . . . . . . . . . . 12 𝑥{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
1211nfint 4886 . . . . . . . . . . 11 𝑥 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
1310, 12nffv 6766 . . . . . . . . . 10 𝑥(ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
149, 13nfss 3909 . . . . . . . . 9 𝑥 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
15 fveq2 6756 . . . . . . . . . 10 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → (ℵ‘𝑥) = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
1615sseq2d 3949 . . . . . . . . 9 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
1714, 16onminsb 7621 . . . . . . . 8 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
183, 8, 173syl 18 . . . . . . 7 ((card‘𝐴) = 𝐴𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
1918a1i 11 . . . . . 6 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → ((card‘𝐴) = 𝐴𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
20 fveq2 6756 . . . . . . . . 9 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (ℵ‘∅))
21 aleph0 9753 . . . . . . . . 9 (ℵ‘∅) = ω
2220, 21eqtrdi 2795 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = ω)
2322sseq1d 3948 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → ((ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴 ↔ ω ⊆ 𝐴))
2423biimprd 247 . . . . . 6 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (ω ⊆ 𝐴 → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴))
2519, 24anim12d 608 . . . . 5 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴)))
26 eqss 3932 . . . . 5 (𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴))
2725, 26syl6ibr 251 . . . 4 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
2827com12 32 . . 3 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
2928ancoms 458 . 2 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
30 fveq2 6756 . . . . . . . . . . 11 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
3130sseq2d 3949 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
3231onnminsb 7626 . . . . . . . . 9 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ¬ 𝐴 ⊆ (ℵ‘𝑦)))
33 vex 3426 . . . . . . . . . . 11 𝑦 ∈ V
3433sucid 6330 . . . . . . . . . 10 𝑦 ∈ suc 𝑦
35 eleq2 2827 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → (𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ 𝑦 ∈ suc 𝑦))
3634, 35mpbiri 257 . . . . . . . . 9 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
3732, 36impel 505 . . . . . . . 8 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → ¬ 𝐴 ⊆ (ℵ‘𝑦))
3837adantl 481 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ (𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → ¬ 𝐴 ⊆ (ℵ‘𝑦))
39 fveq2 6756 . . . . . . . . . . 11 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (ℵ‘suc 𝑦))
40 alephsuc 9755 . . . . . . . . . . 11 (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦)))
4139, 40sylan9eqr 2801 . . . . . . . . . 10 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (har‘(ℵ‘𝑦)))
4241eleq2d 2824 . . . . . . . . 9 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ 𝐴 ∈ (har‘(ℵ‘𝑦))))
4342biimpd 228 . . . . . . . 8 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 ∈ (har‘(ℵ‘𝑦))))
44 elharval 9250 . . . . . . . . . 10 (𝐴 ∈ (har‘(ℵ‘𝑦)) ↔ (𝐴 ∈ On ∧ 𝐴 ≼ (ℵ‘𝑦)))
4544simprbi 496 . . . . . . . . 9 (𝐴 ∈ (har‘(ℵ‘𝑦)) → 𝐴 ≼ (ℵ‘𝑦))
46 onenon 9638 . . . . . . . . . . . 12 (𝐴 ∈ On → 𝐴 ∈ dom card)
473, 46syl 17 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴𝐴 ∈ dom card)
48 alephon 9756 . . . . . . . . . . . 12 (ℵ‘𝑦) ∈ On
49 onenon 9638 . . . . . . . . . . . 12 ((ℵ‘𝑦) ∈ On → (ℵ‘𝑦) ∈ dom card)
5048, 49ax-mp 5 . . . . . . . . . . 11 (ℵ‘𝑦) ∈ dom card
51 carddom2 9666 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ (ℵ‘𝑦) ∈ dom card) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦)))
5247, 50, 51sylancl 585 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦)))
53 sseq1 3942 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (card‘(ℵ‘𝑦))))
54 alephcard 9757 . . . . . . . . . . . 12 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)
5554sseq2i 3946 . . . . . . . . . . 11 (𝐴 ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦))
5653, 55bitrdi 286 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
5752, 56bitr3d 280 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → (𝐴 ≼ (ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
5845, 57syl5ib 243 . . . . . . . 8 ((card‘𝐴) = 𝐴 → (𝐴 ∈ (har‘(ℵ‘𝑦)) → 𝐴 ⊆ (ℵ‘𝑦)))
5943, 58sylan9r 508 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ (𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 ⊆ (ℵ‘𝑦)))
6038, 59mtod 197 . . . . . 6 (((card‘𝐴) = 𝐴 ∧ (𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
6160rexlimdvaa 3213 . . . . 5 ((card‘𝐴) = 𝐴 → (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
62 onintrab2 7624 . . . . . . . . . . . . . 14 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) ↔ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
638, 62sylib 217 . . . . . . . . . . . . 13 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
64 onelon 6276 . . . . . . . . . . . . 13 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝑦 ∈ On)
6563, 64sylan 579 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝑦 ∈ On)
6632adantld 490 . . . . . . . . . . . 12 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ⊆ (ℵ‘𝑦)))
6765, 66mpcom 38 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ⊆ (ℵ‘𝑦))
6848onelssi 6360 . . . . . . . . . . 11 (𝐴 ∈ (ℵ‘𝑦) → 𝐴 ⊆ (ℵ‘𝑦))
6967, 68nsyl 140 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ∈ (ℵ‘𝑦))
7069nrexdv 3197 . . . . . . . . 9 (𝐴 ∈ On → ¬ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))
7170adantr 480 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))
72 alephlim 9754 . . . . . . . . . . 11 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦))
7363, 72sylan 579 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦))
7473eleq2d 2824 . . . . . . . . 9 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ 𝐴 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦)))
75 eliun 4925 . . . . . . . . 9 (𝐴 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦) ↔ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))
7674, 75bitrdi 286 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦)))
7771, 76mtbird 324 . . . . . . 7 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
7877ex 412 . . . . . 6 (𝐴 ∈ On → (Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
793, 78syl 17 . . . . 5 ((card‘𝐴) = 𝐴 → (Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
8061, 79jaod 855 . . . 4 ((card‘𝐴) = 𝐴 → ((∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
818, 17syl 17 . . . . . 6 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
82 alephon 9756 . . . . . . 7 (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∈ On
83 onsseleq 6292 . . . . . . 7 ((𝐴 ∈ On ∧ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∈ On) → (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
8482, 83mpan2 687 . . . . . 6 (𝐴 ∈ On → (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
8581, 84mpbid 231 . . . . 5 (𝐴 ∈ On → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
8685ord 860 . . . 4 (𝐴 ∈ On → (¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
873, 80, 86sylsyld 61 . . 3 ((card‘𝐴) = 𝐴 → ((∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
8887adantl 481 . 2 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ((∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
89 eloni 6261 . . . . 5 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
90 ordzsl 7667 . . . . . 6 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ ∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
91 3orass 1088 . . . . . 6 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ ∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9290, 91bitri 274 . . . . 5 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9389, 92sylib 217 . . . 4 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
943, 63, 933syl 18 . . 3 ((card‘𝐴) = 𝐴 → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9594adantl 481 . 2 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9629, 88, 95mpjaod 856 1 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  wss 3883  c0 4253   cint 4876   ciun 4921   class class class wbr 5070  dom cdm 5580  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  cfv 6418  ωcom 7687  cdom 8689  harchar 9245  cardccrd 9624  cale 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-har 9246  df-card 9628  df-aleph 9629
This theorem is referenced by:  cardalephex  9777  tskcard  10468
  Copyright terms: Public domain W3C validator