Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onminsb | Structured version Visualization version GIF version |
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
Ref | Expression |
---|---|
onminsb.1 | ⊢ Ⅎ𝑥𝜓 |
onminsb.2 | ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
onminsb | ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabn0 4282 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑) | |
2 | ssrab2 3985 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
3 | onint 7510 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) | |
4 | 2, 3 | mpan 690 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
5 | 1, 4 | sylbir 238 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
6 | nfrab1 3303 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} | |
7 | 6 | nfint 4849 | . . . 4 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝜑} |
8 | nfcv 2920 | . . . 4 ⊢ Ⅎ𝑥On | |
9 | onminsb.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
10 | onminsb.2 | . . . 4 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) | |
11 | 7, 8, 9, 10 | elrabf 3599 | . . 3 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ 𝜓)) |
12 | 11 | simprbi 501 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜓) |
13 | 5, 12 | syl 17 | 1 ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 ≠ wne 2952 ∃wrex 3072 {crab 3075 ⊆ wss 3859 ∅c0 4226 ∩ cint 4839 Oncon0 6170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-br 5034 df-opab 5096 df-tr 5140 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-ord 6173 df-on 6174 |
This theorem is referenced by: oawordeulem 8191 rankidb 9255 cardmin2 9454 cardaleph 9542 cardmin 10017 |
Copyright terms: Public domain | W3C validator |