MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminsb Structured version   Visualization version   GIF version

Theorem onminsb 7830
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
Hypotheses
Ref Expression
onminsb.1 𝑥𝜓
onminsb.2 (𝑥 = {𝑥 ∈ On ∣ 𝜑} → (𝜑𝜓))
Assertion
Ref Expression
onminsb (∃𝑥 ∈ On 𝜑𝜓)

Proof of Theorem onminsb
StepHypRef Expression
1 rabn0 4412 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑)
2 ssrab2 4103 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
3 onint 7826 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
42, 3mpan 689 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
51, 4sylbir 235 . 2 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
6 nfrab1 3464 . . . . 5 𝑥{𝑥 ∈ On ∣ 𝜑}
76nfint 4980 . . . 4 𝑥 {𝑥 ∈ On ∣ 𝜑}
8 nfcv 2908 . . . 4 𝑥On
9 onminsb.1 . . . 4 𝑥𝜓
10 onminsb.2 . . . 4 (𝑥 = {𝑥 ∈ On ∣ 𝜑} → (𝜑𝜓))
117, 8, 9, 10elrabf 3704 . . 3 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ ( {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ 𝜓))
1211simprbi 496 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜓)
135, 12syl 17 1 (∃𝑥 ∈ On 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wnf 1781  wcel 2108  wne 2946  wrex 3076  {crab 3443  wss 3976  c0 4352   cint 4970  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by:  oawordeulem  8610  rankidb  9869  cardmin2  10068  cardaleph  10158  cardmin  10633  naddwordnexlem4  43363
  Copyright terms: Public domain W3C validator