![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onminsb | Structured version Visualization version GIF version |
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
Ref | Expression |
---|---|
onminsb.1 | ⊢ Ⅎ𝑥𝜓 |
onminsb.2 | ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
onminsb | ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabn0 4412 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑) | |
2 | ssrab2 4103 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
3 | onint 7826 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) | |
4 | 2, 3 | mpan 689 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
5 | 1, 4 | sylbir 235 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
6 | nfrab1 3464 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} | |
7 | 6 | nfint 4980 | . . . 4 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝜑} |
8 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥On | |
9 | onminsb.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
10 | onminsb.2 | . . . 4 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) | |
11 | 7, 8, 9, 10 | elrabf 3704 | . . 3 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ 𝜓)) |
12 | 11 | simprbi 496 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜓) |
13 | 5, 12 | syl 17 | 1 ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 ∩ cint 4970 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: oawordeulem 8610 rankidb 9869 cardmin2 10068 cardaleph 10158 cardmin 10633 naddwordnexlem4 43363 |
Copyright terms: Public domain | W3C validator |