MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminsb Structured version   Visualization version   GIF version

Theorem onminsb 7734
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
Hypotheses
Ref Expression
onminsb.1 𝑥𝜓
onminsb.2 (𝑥 = {𝑥 ∈ On ∣ 𝜑} → (𝜑𝜓))
Assertion
Ref Expression
onminsb (∃𝑥 ∈ On 𝜑𝜓)

Proof of Theorem onminsb
StepHypRef Expression
1 rabn0 4342 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑)
2 ssrab2 4033 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
3 onint 7730 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
42, 3mpan 690 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
51, 4sylbir 235 . 2 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
6 nfrab1 3417 . . . . 5 𝑥{𝑥 ∈ On ∣ 𝜑}
76nfint 4909 . . . 4 𝑥 {𝑥 ∈ On ∣ 𝜑}
8 nfcv 2891 . . . 4 𝑥On
9 onminsb.1 . . . 4 𝑥𝜓
10 onminsb.2 . . . 4 (𝑥 = {𝑥 ∈ On ∣ 𝜑} → (𝜑𝜓))
117, 8, 9, 10elrabf 3646 . . 3 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ ( {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ 𝜓))
1211simprbi 496 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜓)
135, 12syl 17 1 (∃𝑥 ∈ On 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wrex 3053  {crab 3396  wss 3905  c0 4286   cint 4899  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315
This theorem is referenced by:  oawordeulem  8479  rankidb  9715  cardmin2  9914  cardaleph  10002  cardmin  10477  onvf1odlem2  35076  naddwordnexlem4  43374
  Copyright terms: Public domain W3C validator