| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onminsb | Structured version Visualization version GIF version | ||
| Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| Ref | Expression |
|---|---|
| onminsb.1 | ⊢ Ⅎ𝑥𝜓 |
| onminsb.2 | ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| onminsb | ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 4339 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑) | |
| 2 | ssrab2 4030 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
| 3 | onint 7723 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
| 5 | 1, 4 | sylbir 235 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
| 6 | nfrab1 3415 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} | |
| 7 | 6 | nfint 4907 | . . . 4 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝜑} |
| 8 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥On | |
| 9 | onminsb.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 10 | onminsb.2 | . . . 4 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) | |
| 11 | 7, 8, 9, 10 | elrabf 3644 | . . 3 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ 𝜓)) |
| 12 | 11 | simprbi 496 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜓) |
| 13 | 5, 12 | syl 17 | 1 ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ⊆ wss 3902 ∅c0 4283 ∩ cint 4897 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: oawordeulem 8469 rankidb 9690 cardmin2 9889 cardaleph 9977 cardmin 10452 onvf1odlem2 35136 naddwordnexlem4 43433 |
| Copyright terms: Public domain | W3C validator |