![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onminsb | Structured version Visualization version GIF version |
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
Ref | Expression |
---|---|
onminsb.1 | ⊢ Ⅎ𝑥𝜓 |
onminsb.2 | ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
onminsb | ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabn0 4384 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑) | |
2 | ssrab2 4076 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
3 | onint 7780 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) | |
4 | 2, 3 | mpan 686 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
5 | 1, 4 | sylbir 234 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
6 | nfrab1 3449 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} | |
7 | 6 | nfint 4959 | . . . 4 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝜑} |
8 | nfcv 2901 | . . . 4 ⊢ Ⅎ𝑥On | |
9 | onminsb.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
10 | onminsb.2 | . . . 4 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) | |
11 | 7, 8, 9, 10 | elrabf 3678 | . . 3 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ 𝜓)) |
12 | 11 | simprbi 495 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜓) |
13 | 5, 12 | syl 17 | 1 ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ≠ wne 2938 ∃wrex 3068 {crab 3430 ⊆ wss 3947 ∅c0 4321 ∩ cint 4949 Oncon0 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6366 df-on 6367 |
This theorem is referenced by: oawordeulem 8556 rankidb 9797 cardmin2 9996 cardaleph 10086 cardmin 10561 naddwordnexlem4 42454 |
Copyright terms: Public domain | W3C validator |