| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onminsb | Structured version Visualization version GIF version | ||
| Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| Ref | Expression |
|---|---|
| onminsb.1 | ⊢ Ⅎ𝑥𝜓 |
| onminsb.2 | ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| onminsb | ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 4364 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑) | |
| 2 | ssrab2 4055 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
| 3 | onint 7784 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
| 5 | 1, 4 | sylbir 235 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑}) |
| 6 | nfrab1 3436 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} | |
| 7 | 6 | nfint 4932 | . . . 4 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝜑} |
| 8 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑥On | |
| 9 | onminsb.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 10 | onminsb.2 | . . . 4 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) | |
| 11 | 7, 8, 9, 10 | elrabf 3667 | . . 3 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ 𝜓)) |
| 12 | 11 | simprbi 496 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜓) |
| 13 | 5, 12 | syl 17 | 1 ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 ⊆ wss 3926 ∅c0 4308 ∩ cint 4922 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: oawordeulem 8566 rankidb 9814 cardmin2 10013 cardaleph 10103 cardmin 10578 naddwordnexlem4 43425 |
| Copyright terms: Public domain | W3C validator |