| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oawordeulem.3 | . . . . 5
⊢ 𝑆 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} | 
| 2 | 1 | ssrab3 4081 | . . . 4
⊢ 𝑆 ⊆ On | 
| 3 |  | oawordeulem.2 | . . . . . 6
⊢ 𝐵 ∈ On | 
| 4 |  | oawordeulem.1 | . . . . . . 7
⊢ 𝐴 ∈ On | 
| 5 |  | oaword2 8592 | . . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵)) | 
| 6 | 3, 4, 5 | mp2an 692 | . . . . . 6
⊢ 𝐵 ⊆ (𝐴 +o 𝐵) | 
| 7 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵)) | 
| 8 | 7 | sseq2d 4015 | . . . . . . 7
⊢ (𝑦 = 𝐵 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝐵))) | 
| 9 | 8, 1 | elrab2 3694 | . . . . . 6
⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ On ∧ 𝐵 ⊆ (𝐴 +o 𝐵))) | 
| 10 | 3, 6, 9 | mpbir2an 711 | . . . . 5
⊢ 𝐵 ∈ 𝑆 | 
| 11 | 10 | ne0ii 4343 | . . . 4
⊢ 𝑆 ≠ ∅ | 
| 12 |  | oninton 7816 | . . . 4
⊢ ((𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∩ 𝑆
∈ On) | 
| 13 | 2, 11, 12 | mp2an 692 | . . 3
⊢ ∩ 𝑆
∈ On | 
| 14 |  | onzsl 7868 | . . . . . 6
⊢ (∩ 𝑆
∈ On ↔ (∩ 𝑆 = ∅ ∨ ∃𝑧 ∈ On ∩ 𝑆 = suc 𝑧 ∨ (∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆))) | 
| 15 | 13, 14 | mpbi 230 | . . . . 5
⊢ (∩ 𝑆 =
∅ ∨ ∃𝑧
∈ On ∩ 𝑆 = suc 𝑧 ∨ (∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆)) | 
| 16 |  | oveq2 7440 | . . . . . . . . 9
⊢ (∩ 𝑆 =
∅ → (𝐴
+o ∩ 𝑆) = (𝐴 +o ∅)) | 
| 17 |  | oa0 8555 | . . . . . . . . . 10
⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | 
| 18 | 4, 17 | ax-mp 5 | . . . . . . . . 9
⊢ (𝐴 +o ∅) = 𝐴 | 
| 19 | 16, 18 | eqtrdi 2792 | . . . . . . . 8
⊢ (∩ 𝑆 =
∅ → (𝐴
+o ∩ 𝑆) = 𝐴) | 
| 20 | 19 | sseq1d 4014 | . . . . . . 7
⊢ (∩ 𝑆 =
∅ → ((𝐴
+o ∩ 𝑆) ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | 
| 21 | 20 | biimprd 248 | . . . . . 6
⊢ (∩ 𝑆 =
∅ → (𝐴 ⊆
𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵)) | 
| 22 |  | oveq2 7440 | . . . . . . . . . 10
⊢ (∩ 𝑆 =
suc 𝑧 → (𝐴 +o ∩ 𝑆) =
(𝐴 +o suc 𝑧)) | 
| 23 |  | oasuc 8563 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑧 ∈ On) → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧)) | 
| 24 | 4, 23 | mpan 690 | . . . . . . . . . 10
⊢ (𝑧 ∈ On → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧)) | 
| 25 | 22, 24 | sylan9eqr 2798 | . . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ ∩ 𝑆 =
suc 𝑧) → (𝐴 +o ∩ 𝑆) =
suc (𝐴 +o 𝑧)) | 
| 26 |  | vex 3483 | . . . . . . . . . . . . 13
⊢ 𝑧 ∈ V | 
| 27 | 26 | sucid 6465 | . . . . . . . . . . . 12
⊢ 𝑧 ∈ suc 𝑧 | 
| 28 |  | eleq2 2829 | . . . . . . . . . . . 12
⊢ (∩ 𝑆 =
suc 𝑧 → (𝑧 ∈ ∩ 𝑆
↔ 𝑧 ∈ suc 𝑧)) | 
| 29 | 27, 28 | mpbiri 258 | . . . . . . . . . . 11
⊢ (∩ 𝑆 =
suc 𝑧 → 𝑧 ∈ ∩ 𝑆) | 
| 30 | 13 | oneli 6497 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ ∩ 𝑆
→ 𝑧 ∈
On) | 
| 31 | 1 | inteqi 4949 | . . . . . . . . . . . . . . 15
⊢ ∩ 𝑆 =
∩ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} | 
| 32 | 31 | eleq2i 2832 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ∩ 𝑆
↔ 𝑧 ∈ ∩ {𝑦
∈ On ∣ 𝐵 ⊆
(𝐴 +o 𝑦)}) | 
| 33 |  | oveq2 7440 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (𝐴 +o 𝑦) = (𝐴 +o 𝑧)) | 
| 34 | 33 | sseq2d 4015 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝑧))) | 
| 35 | 34 | onnminsb 7820 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ On → (𝑧 ∈ ∩ {𝑦
∈ On ∣ 𝐵 ⊆
(𝐴 +o 𝑦)} → ¬ 𝐵 ⊆ (𝐴 +o 𝑧))) | 
| 36 | 32, 35 | biimtrid 242 | . . . . . . . . . . . . 13
⊢ (𝑧 ∈ On → (𝑧 ∈ ∩ 𝑆
→ ¬ 𝐵 ⊆
(𝐴 +o 𝑧))) | 
| 37 |  | oacl 8574 | . . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝑧 ∈ On) → (𝐴 +o 𝑧) ∈ On) | 
| 38 | 4, 37 | mpan 690 | . . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ On → (𝐴 +o 𝑧) ∈ On) | 
| 39 |  | ontri1 6417 | . . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ On ∧ (𝐴 +o 𝑧) ∈ On) → (𝐵 ⊆ (𝐴 +o 𝑧) ↔ ¬ (𝐴 +o 𝑧) ∈ 𝐵)) | 
| 40 | 3, 38, 39 | sylancr 587 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ On → (𝐵 ⊆ (𝐴 +o 𝑧) ↔ ¬ (𝐴 +o 𝑧) ∈ 𝐵)) | 
| 41 | 40 | con2bid 354 | . . . . . . . . . . . . 13
⊢ (𝑧 ∈ On → ((𝐴 +o 𝑧) ∈ 𝐵 ↔ ¬ 𝐵 ⊆ (𝐴 +o 𝑧))) | 
| 42 | 36, 41 | sylibrd 259 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ On → (𝑧 ∈ ∩ 𝑆
→ (𝐴 +o
𝑧) ∈ 𝐵)) | 
| 43 | 30, 42 | mpcom 38 | . . . . . . . . . . 11
⊢ (𝑧 ∈ ∩ 𝑆
→ (𝐴 +o
𝑧) ∈ 𝐵) | 
| 44 | 3 | onordi 6494 | . . . . . . . . . . . 12
⊢ Ord 𝐵 | 
| 45 |  | ordsucss 7839 | . . . . . . . . . . . 12
⊢ (Ord
𝐵 → ((𝐴 +o 𝑧) ∈ 𝐵 → suc (𝐴 +o 𝑧) ⊆ 𝐵)) | 
| 46 | 44, 45 | ax-mp 5 | . . . . . . . . . . 11
⊢ ((𝐴 +o 𝑧) ∈ 𝐵 → suc (𝐴 +o 𝑧) ⊆ 𝐵) | 
| 47 | 29, 43, 46 | 3syl 18 | . . . . . . . . . 10
⊢ (∩ 𝑆 =
suc 𝑧 → suc (𝐴 +o 𝑧) ⊆ 𝐵) | 
| 48 | 47 | adantl 481 | . . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ ∩ 𝑆 =
suc 𝑧) → suc (𝐴 +o 𝑧) ⊆ 𝐵) | 
| 49 | 25, 48 | eqsstrd 4017 | . . . . . . . 8
⊢ ((𝑧 ∈ On ∧ ∩ 𝑆 =
suc 𝑧) → (𝐴 +o ∩ 𝑆)
⊆ 𝐵) | 
| 50 | 49 | rexlimiva 3146 | . . . . . . 7
⊢
(∃𝑧 ∈ On
∩ 𝑆 = suc 𝑧 → (𝐴 +o ∩
𝑆) ⊆ 𝐵) | 
| 51 | 50 | a1d 25 | . . . . . 6
⊢
(∃𝑧 ∈ On
∩ 𝑆 = suc 𝑧 → (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵)) | 
| 52 |  | oalim 8571 | . . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ (∩ 𝑆
∈ V ∧ Lim ∩ 𝑆)) → (𝐴 +o ∩
𝑆) = ∪ 𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧)) | 
| 53 | 4, 52 | mpan 690 | . . . . . . . 8
⊢ ((∩ 𝑆
∈ V ∧ Lim ∩ 𝑆) → (𝐴 +o ∩
𝑆) = ∪ 𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧)) | 
| 54 |  | iunss 5044 | . . . . . . . . 9
⊢ (∪ 𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧) ⊆ 𝐵 ↔ ∀𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧) ⊆ 𝐵) | 
| 55 | 3 | onelssi 6498 | . . . . . . . . . 10
⊢ ((𝐴 +o 𝑧) ∈ 𝐵 → (𝐴 +o 𝑧) ⊆ 𝐵) | 
| 56 | 43, 55 | syl 17 | . . . . . . . . 9
⊢ (𝑧 ∈ ∩ 𝑆
→ (𝐴 +o
𝑧) ⊆ 𝐵) | 
| 57 | 54, 56 | mprgbir 3067 | . . . . . . . 8
⊢ ∪ 𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧) ⊆ 𝐵 | 
| 58 | 53, 57 | eqsstrdi 4027 | . . . . . . 7
⊢ ((∩ 𝑆
∈ V ∧ Lim ∩ 𝑆) → (𝐴 +o ∩
𝑆) ⊆ 𝐵) | 
| 59 | 58 | a1d 25 | . . . . . 6
⊢ ((∩ 𝑆
∈ V ∧ Lim ∩ 𝑆) → (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵)) | 
| 60 | 21, 51, 59 | 3jaoi 1429 | . . . . 5
⊢ ((∩ 𝑆 =
∅ ∨ ∃𝑧
∈ On ∩ 𝑆 = suc 𝑧 ∨ (∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆))
→ (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵)) | 
| 61 | 15, 60 | ax-mp 5 | . . . 4
⊢ (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵) | 
| 62 | 8 | rspcev 3621 | . . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝐵 ⊆ (𝐴 +o 𝐵)) → ∃𝑦 ∈ On 𝐵 ⊆ (𝐴 +o 𝑦)) | 
| 63 | 3, 6, 62 | mp2an 692 | . . . . . 6
⊢
∃𝑦 ∈ On
𝐵 ⊆ (𝐴 +o 𝑦) | 
| 64 |  | nfcv 2904 | . . . . . . . 8
⊢
Ⅎ𝑦𝐵 | 
| 65 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑦𝐴 | 
| 66 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑦
+o | 
| 67 |  | nfrab1 3456 | . . . . . . . . . 10
⊢
Ⅎ𝑦{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} | 
| 68 | 67 | nfint 4955 | . . . . . . . . 9
⊢
Ⅎ𝑦∩ {𝑦
∈ On ∣ 𝐵 ⊆
(𝐴 +o 𝑦)} | 
| 69 | 65, 66, 68 | nfov 7462 | . . . . . . . 8
⊢
Ⅎ𝑦(𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) | 
| 70 | 64, 69 | nfss 3975 | . . . . . . 7
⊢
Ⅎ𝑦 𝐵 ⊆ (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) | 
| 71 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑦 = ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐴 +o 𝑦) = (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})) | 
| 72 | 71 | sseq2d 4015 | . . . . . . 7
⊢ (𝑦 = ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))) | 
| 73 | 70, 72 | onminsb 7815 | . . . . . 6
⊢
(∃𝑦 ∈ On
𝐵 ⊆ (𝐴 +o 𝑦) → 𝐵 ⊆ (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})) | 
| 74 | 63, 73 | ax-mp 5 | . . . . 5
⊢ 𝐵 ⊆ (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) | 
| 75 | 31 | oveq2i 7443 | . . . . 5
⊢ (𝐴 +o ∩ 𝑆) =
(𝐴 +o ∩ {𝑦
∈ On ∣ 𝐵 ⊆
(𝐴 +o 𝑦)}) | 
| 76 | 74, 75 | sseqtrri 4032 | . . . 4
⊢ 𝐵 ⊆ (𝐴 +o ∩
𝑆) | 
| 77 |  | eqss 3998 | . . . 4
⊢ ((𝐴 +o ∩ 𝑆) =
𝐵 ↔ ((𝐴 +o ∩ 𝑆)
⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 +o ∩
𝑆))) | 
| 78 | 61, 76, 77 | sylanblrc 590 | . . 3
⊢ (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) = 𝐵) | 
| 79 |  | oveq2 7440 | . . . . 5
⊢ (𝑥 = ∩
𝑆 → (𝐴 +o 𝑥) = (𝐴 +o ∩
𝑆)) | 
| 80 | 79 | eqeq1d 2738 | . . . 4
⊢ (𝑥 = ∩
𝑆 → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o ∩
𝑆) = 𝐵)) | 
| 81 | 80 | rspcev 3621 | . . 3
⊢ ((∩ 𝑆
∈ On ∧ (𝐴
+o ∩ 𝑆) = 𝐵) → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) | 
| 82 | 13, 78, 81 | sylancr 587 | . 2
⊢ (𝐴 ⊆ 𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) | 
| 83 |  | eqtr3 2762 | . . . 4
⊢ (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | 
| 84 |  | oacan 8587 | . . . . 5
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑥) = (𝐴 +o 𝑦) ↔ 𝑥 = 𝑦)) | 
| 85 | 4, 84 | mp3an1 1449 | . . . 4
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑥) = (𝐴 +o 𝑦) ↔ 𝑥 = 𝑦)) | 
| 86 | 83, 85 | imbitrid 244 | . . 3
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) | 
| 87 | 86 | rgen2 3198 | . 2
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On
(((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦) | 
| 88 |  | oveq2 7440 | . . . 4
⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | 
| 89 | 88 | eqeq1d 2738 | . . 3
⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o 𝑦) = 𝐵)) | 
| 90 | 89 | reu4 3736 | . 2
⊢
(∃!𝑥 ∈ On
(𝐴 +o 𝑥) = 𝐵 ↔ (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦))) | 
| 91 | 82, 87, 90 | sylanblrc 590 | 1
⊢ (𝐴 ⊆ 𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |