Step | Hyp | Ref
| Expression |
1 | | oawordeulem.3 |
. . . . 5
⊢ 𝑆 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} |
2 | 1 | ssrab3 4015 |
. . . 4
⊢ 𝑆 ⊆ On |
3 | | oawordeulem.2 |
. . . . . 6
⊢ 𝐵 ∈ On |
4 | | oawordeulem.1 |
. . . . . . 7
⊢ 𝐴 ∈ On |
5 | | oaword2 8384 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵)) |
6 | 3, 4, 5 | mp2an 689 |
. . . . . 6
⊢ 𝐵 ⊆ (𝐴 +o 𝐵) |
7 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵)) |
8 | 7 | sseq2d 3953 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝐵))) |
9 | 8, 1 | elrab2 3627 |
. . . . . 6
⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ On ∧ 𝐵 ⊆ (𝐴 +o 𝐵))) |
10 | 3, 6, 9 | mpbir2an 708 |
. . . . 5
⊢ 𝐵 ∈ 𝑆 |
11 | 10 | ne0ii 4271 |
. . . 4
⊢ 𝑆 ≠ ∅ |
12 | | oninton 7645 |
. . . 4
⊢ ((𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∩ 𝑆
∈ On) |
13 | 2, 11, 12 | mp2an 689 |
. . 3
⊢ ∩ 𝑆
∈ On |
14 | | onzsl 7693 |
. . . . . 6
⊢ (∩ 𝑆
∈ On ↔ (∩ 𝑆 = ∅ ∨ ∃𝑧 ∈ On ∩ 𝑆 = suc 𝑧 ∨ (∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆))) |
15 | 13, 14 | mpbi 229 |
. . . . 5
⊢ (∩ 𝑆 =
∅ ∨ ∃𝑧
∈ On ∩ 𝑆 = suc 𝑧 ∨ (∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆)) |
16 | | oveq2 7283 |
. . . . . . . . 9
⊢ (∩ 𝑆 =
∅ → (𝐴
+o ∩ 𝑆) = (𝐴 +o ∅)) |
17 | | oa0 8346 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) |
18 | 4, 17 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐴 +o ∅) = 𝐴 |
19 | 16, 18 | eqtrdi 2794 |
. . . . . . . 8
⊢ (∩ 𝑆 =
∅ → (𝐴
+o ∩ 𝑆) = 𝐴) |
20 | 19 | sseq1d 3952 |
. . . . . . 7
⊢ (∩ 𝑆 =
∅ → ((𝐴
+o ∩ 𝑆) ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
21 | 20 | biimprd 247 |
. . . . . 6
⊢ (∩ 𝑆 =
∅ → (𝐴 ⊆
𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵)) |
22 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (∩ 𝑆 =
suc 𝑧 → (𝐴 +o ∩ 𝑆) =
(𝐴 +o suc 𝑧)) |
23 | | oasuc 8354 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑧 ∈ On) → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧)) |
24 | 4, 23 | mpan 687 |
. . . . . . . . . 10
⊢ (𝑧 ∈ On → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧)) |
25 | 22, 24 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ ∩ 𝑆 =
suc 𝑧) → (𝐴 +o ∩ 𝑆) =
suc (𝐴 +o 𝑧)) |
26 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
27 | 26 | sucid 6345 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ suc 𝑧 |
28 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (∩ 𝑆 =
suc 𝑧 → (𝑧 ∈ ∩ 𝑆
↔ 𝑧 ∈ suc 𝑧)) |
29 | 27, 28 | mpbiri 257 |
. . . . . . . . . . 11
⊢ (∩ 𝑆 =
suc 𝑧 → 𝑧 ∈ ∩ 𝑆) |
30 | 13 | oneli 6374 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ∩ 𝑆
→ 𝑧 ∈
On) |
31 | 1 | inteqi 4883 |
. . . . . . . . . . . . . . 15
⊢ ∩ 𝑆 =
∩ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} |
32 | 31 | eleq2i 2830 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ∩ 𝑆
↔ 𝑧 ∈ ∩ {𝑦
∈ On ∣ 𝐵 ⊆
(𝐴 +o 𝑦)}) |
33 | | oveq2 7283 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (𝐴 +o 𝑦) = (𝐴 +o 𝑧)) |
34 | 33 | sseq2d 3953 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝑧))) |
35 | 34 | onnminsb 7649 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ On → (𝑧 ∈ ∩ {𝑦
∈ On ∣ 𝐵 ⊆
(𝐴 +o 𝑦)} → ¬ 𝐵 ⊆ (𝐴 +o 𝑧))) |
36 | 32, 35 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ On → (𝑧 ∈ ∩ 𝑆
→ ¬ 𝐵 ⊆
(𝐴 +o 𝑧))) |
37 | | oacl 8365 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝑧 ∈ On) → (𝐴 +o 𝑧) ∈ On) |
38 | 4, 37 | mpan 687 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ On → (𝐴 +o 𝑧) ∈ On) |
39 | | ontri1 6300 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ On ∧ (𝐴 +o 𝑧) ∈ On) → (𝐵 ⊆ (𝐴 +o 𝑧) ↔ ¬ (𝐴 +o 𝑧) ∈ 𝐵)) |
40 | 3, 38, 39 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ On → (𝐵 ⊆ (𝐴 +o 𝑧) ↔ ¬ (𝐴 +o 𝑧) ∈ 𝐵)) |
41 | 40 | con2bid 355 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ On → ((𝐴 +o 𝑧) ∈ 𝐵 ↔ ¬ 𝐵 ⊆ (𝐴 +o 𝑧))) |
42 | 36, 41 | sylibrd 258 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ On → (𝑧 ∈ ∩ 𝑆
→ (𝐴 +o
𝑧) ∈ 𝐵)) |
43 | 30, 42 | mpcom 38 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ∩ 𝑆
→ (𝐴 +o
𝑧) ∈ 𝐵) |
44 | 3 | onordi 6371 |
. . . . . . . . . . . 12
⊢ Ord 𝐵 |
45 | | ordsucss 7665 |
. . . . . . . . . . . 12
⊢ (Ord
𝐵 → ((𝐴 +o 𝑧) ∈ 𝐵 → suc (𝐴 +o 𝑧) ⊆ 𝐵)) |
46 | 44, 45 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝐴 +o 𝑧) ∈ 𝐵 → suc (𝐴 +o 𝑧) ⊆ 𝐵) |
47 | 29, 43, 46 | 3syl 18 |
. . . . . . . . . 10
⊢ (∩ 𝑆 =
suc 𝑧 → suc (𝐴 +o 𝑧) ⊆ 𝐵) |
48 | 47 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ ∩ 𝑆 =
suc 𝑧) → suc (𝐴 +o 𝑧) ⊆ 𝐵) |
49 | 25, 48 | eqsstrd 3959 |
. . . . . . . 8
⊢ ((𝑧 ∈ On ∧ ∩ 𝑆 =
suc 𝑧) → (𝐴 +o ∩ 𝑆)
⊆ 𝐵) |
50 | 49 | rexlimiva 3210 |
. . . . . . 7
⊢
(∃𝑧 ∈ On
∩ 𝑆 = suc 𝑧 → (𝐴 +o ∩
𝑆) ⊆ 𝐵) |
51 | 50 | a1d 25 |
. . . . . 6
⊢
(∃𝑧 ∈ On
∩ 𝑆 = suc 𝑧 → (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵)) |
52 | | oalim 8362 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ (∩ 𝑆
∈ V ∧ Lim ∩ 𝑆)) → (𝐴 +o ∩
𝑆) = ∪ 𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧)) |
53 | 4, 52 | mpan 687 |
. . . . . . . 8
⊢ ((∩ 𝑆
∈ V ∧ Lim ∩ 𝑆) → (𝐴 +o ∩
𝑆) = ∪ 𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧)) |
54 | | iunss 4975 |
. . . . . . . . 9
⊢ (∪ 𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧) ⊆ 𝐵 ↔ ∀𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧) ⊆ 𝐵) |
55 | 3 | onelssi 6375 |
. . . . . . . . . 10
⊢ ((𝐴 +o 𝑧) ∈ 𝐵 → (𝐴 +o 𝑧) ⊆ 𝐵) |
56 | 43, 55 | syl 17 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∩ 𝑆
→ (𝐴 +o
𝑧) ⊆ 𝐵) |
57 | 54, 56 | mprgbir 3079 |
. . . . . . . 8
⊢ ∪ 𝑧 ∈ ∩ 𝑆(𝐴 +o 𝑧) ⊆ 𝐵 |
58 | 53, 57 | eqsstrdi 3975 |
. . . . . . 7
⊢ ((∩ 𝑆
∈ V ∧ Lim ∩ 𝑆) → (𝐴 +o ∩
𝑆) ⊆ 𝐵) |
59 | 58 | a1d 25 |
. . . . . 6
⊢ ((∩ 𝑆
∈ V ∧ Lim ∩ 𝑆) → (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵)) |
60 | 21, 51, 59 | 3jaoi 1426 |
. . . . 5
⊢ ((∩ 𝑆 =
∅ ∨ ∃𝑧
∈ On ∩ 𝑆 = suc 𝑧 ∨ (∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆))
→ (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵)) |
61 | 15, 60 | ax-mp 5 |
. . . 4
⊢ (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) ⊆ 𝐵) |
62 | 8 | rspcev 3561 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝐵 ⊆ (𝐴 +o 𝐵)) → ∃𝑦 ∈ On 𝐵 ⊆ (𝐴 +o 𝑦)) |
63 | 3, 6, 62 | mp2an 689 |
. . . . . 6
⊢
∃𝑦 ∈ On
𝐵 ⊆ (𝐴 +o 𝑦) |
64 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐵 |
65 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐴 |
66 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑦
+o |
67 | | nfrab1 3317 |
. . . . . . . . . 10
⊢
Ⅎ𝑦{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} |
68 | 67 | nfint 4889 |
. . . . . . . . 9
⊢
Ⅎ𝑦∩ {𝑦
∈ On ∣ 𝐵 ⊆
(𝐴 +o 𝑦)} |
69 | 65, 66, 68 | nfov 7305 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) |
70 | 64, 69 | nfss 3913 |
. . . . . . 7
⊢
Ⅎ𝑦 𝐵 ⊆ (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) |
71 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑦 = ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐴 +o 𝑦) = (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})) |
72 | 71 | sseq2d 3953 |
. . . . . . 7
⊢ (𝑦 = ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))) |
73 | 70, 72 | onminsb 7644 |
. . . . . 6
⊢
(∃𝑦 ∈ On
𝐵 ⊆ (𝐴 +o 𝑦) → 𝐵 ⊆ (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})) |
74 | 63, 73 | ax-mp 5 |
. . . . 5
⊢ 𝐵 ⊆ (𝐴 +o ∩
{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) |
75 | 31 | oveq2i 7286 |
. . . . 5
⊢ (𝐴 +o ∩ 𝑆) =
(𝐴 +o ∩ {𝑦
∈ On ∣ 𝐵 ⊆
(𝐴 +o 𝑦)}) |
76 | 74, 75 | sseqtrri 3958 |
. . . 4
⊢ 𝐵 ⊆ (𝐴 +o ∩
𝑆) |
77 | | eqss 3936 |
. . . 4
⊢ ((𝐴 +o ∩ 𝑆) =
𝐵 ↔ ((𝐴 +o ∩ 𝑆)
⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 +o ∩
𝑆))) |
78 | 61, 76, 77 | sylanblrc 590 |
. . 3
⊢ (𝐴 ⊆ 𝐵 → (𝐴 +o ∩
𝑆) = 𝐵) |
79 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = ∩
𝑆 → (𝐴 +o 𝑥) = (𝐴 +o ∩
𝑆)) |
80 | 79 | eqeq1d 2740 |
. . . 4
⊢ (𝑥 = ∩
𝑆 → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o ∩
𝑆) = 𝐵)) |
81 | 80 | rspcev 3561 |
. . 3
⊢ ((∩ 𝑆
∈ On ∧ (𝐴
+o ∩ 𝑆) = 𝐵) → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
82 | 13, 78, 81 | sylancr 587 |
. 2
⊢ (𝐴 ⊆ 𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
83 | | eqtr3 2764 |
. . . 4
⊢ (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) |
84 | | oacan 8379 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑥) = (𝐴 +o 𝑦) ↔ 𝑥 = 𝑦)) |
85 | 4, 84 | mp3an1 1447 |
. . . 4
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑥) = (𝐴 +o 𝑦) ↔ 𝑥 = 𝑦)) |
86 | 83, 85 | syl5ib 243 |
. . 3
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
87 | 86 | rgen2 3120 |
. 2
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On
(((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦) |
88 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) |
89 | 88 | eqeq1d 2740 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o 𝑦) = 𝐵)) |
90 | 89 | reu4 3666 |
. 2
⊢
(∃!𝑥 ∈ On
(𝐴 +o 𝑥) = 𝐵 ↔ (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦))) |
91 | 82, 87, 90 | sylanblrc 590 |
1
⊢ (𝐴 ⊆ 𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |