MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordeulem Structured version   Visualization version   GIF version

Theorem oawordeulem 8610
Description: Lemma for oawordex 8613. (Contributed by NM, 11-Dec-2004.)
Hypotheses
Ref Expression
oawordeulem.1 𝐴 ∈ On
oawordeulem.2 𝐵 ∈ On
oawordeulem.3 𝑆 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
Assertion
Ref Expression
oawordeulem (𝐴𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem oawordeulem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oawordeulem.3 . . . . 5 𝑆 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
21ssrab3 4105 . . . 4 𝑆 ⊆ On
3 oawordeulem.2 . . . . . 6 𝐵 ∈ On
4 oawordeulem.1 . . . . . . 7 𝐴 ∈ On
5 oaword2 8609 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵))
63, 4, 5mp2an 691 . . . . . 6 𝐵 ⊆ (𝐴 +o 𝐵)
7 oveq2 7456 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵))
87sseq2d 4041 . . . . . . 7 (𝑦 = 𝐵 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝐵)))
98, 1elrab2 3711 . . . . . 6 (𝐵𝑆 ↔ (𝐵 ∈ On ∧ 𝐵 ⊆ (𝐴 +o 𝐵)))
103, 6, 9mpbir2an 710 . . . . 5 𝐵𝑆
1110ne0ii 4367 . . . 4 𝑆 ≠ ∅
12 oninton 7831 . . . 4 ((𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑆 ∈ On)
132, 11, 12mp2an 691 . . 3 𝑆 ∈ On
14 onzsl 7883 . . . . . 6 ( 𝑆 ∈ On ↔ ( 𝑆 = ∅ ∨ ∃𝑧 ∈ On 𝑆 = suc 𝑧 ∨ ( 𝑆 ∈ V ∧ Lim 𝑆)))
1513, 14mpbi 230 . . . . 5 ( 𝑆 = ∅ ∨ ∃𝑧 ∈ On 𝑆 = suc 𝑧 ∨ ( 𝑆 ∈ V ∧ Lim 𝑆))
16 oveq2 7456 . . . . . . . . 9 ( 𝑆 = ∅ → (𝐴 +o 𝑆) = (𝐴 +o ∅))
17 oa0 8572 . . . . . . . . . 10 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
184, 17ax-mp 5 . . . . . . . . 9 (𝐴 +o ∅) = 𝐴
1916, 18eqtrdi 2796 . . . . . . . 8 ( 𝑆 = ∅ → (𝐴 +o 𝑆) = 𝐴)
2019sseq1d 4040 . . . . . . 7 ( 𝑆 = ∅ → ((𝐴 +o 𝑆) ⊆ 𝐵𝐴𝐵))
2120biimprd 248 . . . . . 6 ( 𝑆 = ∅ → (𝐴𝐵 → (𝐴 +o 𝑆) ⊆ 𝐵))
22 oveq2 7456 . . . . . . . . . 10 ( 𝑆 = suc 𝑧 → (𝐴 +o 𝑆) = (𝐴 +o suc 𝑧))
23 oasuc 8580 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑧 ∈ On) → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧))
244, 23mpan 689 . . . . . . . . . 10 (𝑧 ∈ On → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧))
2522, 24sylan9eqr 2802 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑆 = suc 𝑧) → (𝐴 +o 𝑆) = suc (𝐴 +o 𝑧))
26 vex 3492 . . . . . . . . . . . . 13 𝑧 ∈ V
2726sucid 6477 . . . . . . . . . . . 12 𝑧 ∈ suc 𝑧
28 eleq2 2833 . . . . . . . . . . . 12 ( 𝑆 = suc 𝑧 → (𝑧 𝑆𝑧 ∈ suc 𝑧))
2927, 28mpbiri 258 . . . . . . . . . . 11 ( 𝑆 = suc 𝑧𝑧 𝑆)
3013oneli 6509 . . . . . . . . . . . 12 (𝑧 𝑆𝑧 ∈ On)
311inteqi 4974 . . . . . . . . . . . . . . 15 𝑆 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
3231eleq2i 2836 . . . . . . . . . . . . . 14 (𝑧 𝑆𝑧 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
33 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (𝐴 +o 𝑦) = (𝐴 +o 𝑧))
3433sseq2d 4041 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝑧)))
3534onnminsb 7835 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑧 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → ¬ 𝐵 ⊆ (𝐴 +o 𝑧)))
3632, 35biimtrid 242 . . . . . . . . . . . . 13 (𝑧 ∈ On → (𝑧 𝑆 → ¬ 𝐵 ⊆ (𝐴 +o 𝑧)))
37 oacl 8591 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝑧 ∈ On) → (𝐴 +o 𝑧) ∈ On)
384, 37mpan 689 . . . . . . . . . . . . . . 15 (𝑧 ∈ On → (𝐴 +o 𝑧) ∈ On)
39 ontri1 6429 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ (𝐴 +o 𝑧) ∈ On) → (𝐵 ⊆ (𝐴 +o 𝑧) ↔ ¬ (𝐴 +o 𝑧) ∈ 𝐵))
403, 38, 39sylancr 586 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝐵 ⊆ (𝐴 +o 𝑧) ↔ ¬ (𝐴 +o 𝑧) ∈ 𝐵))
4140con2bid 354 . . . . . . . . . . . . 13 (𝑧 ∈ On → ((𝐴 +o 𝑧) ∈ 𝐵 ↔ ¬ 𝐵 ⊆ (𝐴 +o 𝑧)))
4236, 41sylibrd 259 . . . . . . . . . . . 12 (𝑧 ∈ On → (𝑧 𝑆 → (𝐴 +o 𝑧) ∈ 𝐵))
4330, 42mpcom 38 . . . . . . . . . . 11 (𝑧 𝑆 → (𝐴 +o 𝑧) ∈ 𝐵)
443onordi 6506 . . . . . . . . . . . 12 Ord 𝐵
45 ordsucss 7854 . . . . . . . . . . . 12 (Ord 𝐵 → ((𝐴 +o 𝑧) ∈ 𝐵 → suc (𝐴 +o 𝑧) ⊆ 𝐵))
4644, 45ax-mp 5 . . . . . . . . . . 11 ((𝐴 +o 𝑧) ∈ 𝐵 → suc (𝐴 +o 𝑧) ⊆ 𝐵)
4729, 43, 463syl 18 . . . . . . . . . 10 ( 𝑆 = suc 𝑧 → suc (𝐴 +o 𝑧) ⊆ 𝐵)
4847adantl 481 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑆 = suc 𝑧) → suc (𝐴 +o 𝑧) ⊆ 𝐵)
4925, 48eqsstrd 4047 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑆 = suc 𝑧) → (𝐴 +o 𝑆) ⊆ 𝐵)
5049rexlimiva 3153 . . . . . . 7 (∃𝑧 ∈ On 𝑆 = suc 𝑧 → (𝐴 +o 𝑆) ⊆ 𝐵)
5150a1d 25 . . . . . 6 (∃𝑧 ∈ On 𝑆 = suc 𝑧 → (𝐴𝐵 → (𝐴 +o 𝑆) ⊆ 𝐵))
52 oalim 8588 . . . . . . . . 9 ((𝐴 ∈ On ∧ ( 𝑆 ∈ V ∧ Lim 𝑆)) → (𝐴 +o 𝑆) = 𝑧 𝑆(𝐴 +o 𝑧))
534, 52mpan 689 . . . . . . . 8 (( 𝑆 ∈ V ∧ Lim 𝑆) → (𝐴 +o 𝑆) = 𝑧 𝑆(𝐴 +o 𝑧))
54 iunss 5068 . . . . . . . . 9 ( 𝑧 𝑆(𝐴 +o 𝑧) ⊆ 𝐵 ↔ ∀𝑧 𝑆(𝐴 +o 𝑧) ⊆ 𝐵)
553onelssi 6510 . . . . . . . . . 10 ((𝐴 +o 𝑧) ∈ 𝐵 → (𝐴 +o 𝑧) ⊆ 𝐵)
5643, 55syl 17 . . . . . . . . 9 (𝑧 𝑆 → (𝐴 +o 𝑧) ⊆ 𝐵)
5754, 56mprgbir 3074 . . . . . . . 8 𝑧 𝑆(𝐴 +o 𝑧) ⊆ 𝐵
5853, 57eqsstrdi 4063 . . . . . . 7 (( 𝑆 ∈ V ∧ Lim 𝑆) → (𝐴 +o 𝑆) ⊆ 𝐵)
5958a1d 25 . . . . . 6 (( 𝑆 ∈ V ∧ Lim 𝑆) → (𝐴𝐵 → (𝐴 +o 𝑆) ⊆ 𝐵))
6021, 51, 593jaoi 1428 . . . . 5 (( 𝑆 = ∅ ∨ ∃𝑧 ∈ On 𝑆 = suc 𝑧 ∨ ( 𝑆 ∈ V ∧ Lim 𝑆)) → (𝐴𝐵 → (𝐴 +o 𝑆) ⊆ 𝐵))
6115, 60ax-mp 5 . . . 4 (𝐴𝐵 → (𝐴 +o 𝑆) ⊆ 𝐵)
628rspcev 3635 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐵 ⊆ (𝐴 +o 𝐵)) → ∃𝑦 ∈ On 𝐵 ⊆ (𝐴 +o 𝑦))
633, 6, 62mp2an 691 . . . . . 6 𝑦 ∈ On 𝐵 ⊆ (𝐴 +o 𝑦)
64 nfcv 2908 . . . . . . . 8 𝑦𝐵
65 nfcv 2908 . . . . . . . . 9 𝑦𝐴
66 nfcv 2908 . . . . . . . . 9 𝑦 +o
67 nfrab1 3464 . . . . . . . . . 10 𝑦{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
6867nfint 4980 . . . . . . . . 9 𝑦 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
6965, 66, 68nfov 7478 . . . . . . . 8 𝑦(𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
7064, 69nfss 4001 . . . . . . 7 𝑦 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
71 oveq2 7456 . . . . . . . 8 (𝑦 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐴 +o 𝑦) = (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
7271sseq2d 4041 . . . . . . 7 (𝑦 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})))
7370, 72onminsb 7830 . . . . . 6 (∃𝑦 ∈ On 𝐵 ⊆ (𝐴 +o 𝑦) → 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
7463, 73ax-mp 5 . . . . 5 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
7531oveq2i 7459 . . . . 5 (𝐴 +o 𝑆) = (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
7674, 75sseqtrri 4046 . . . 4 𝐵 ⊆ (𝐴 +o 𝑆)
77 eqss 4024 . . . 4 ((𝐴 +o 𝑆) = 𝐵 ↔ ((𝐴 +o 𝑆) ⊆ 𝐵𝐵 ⊆ (𝐴 +o 𝑆)))
7861, 76, 77sylanblrc 589 . . 3 (𝐴𝐵 → (𝐴 +o 𝑆) = 𝐵)
79 oveq2 7456 . . . . 5 (𝑥 = 𝑆 → (𝐴 +o 𝑥) = (𝐴 +o 𝑆))
8079eqeq1d 2742 . . . 4 (𝑥 = 𝑆 → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o 𝑆) = 𝐵))
8180rspcev 3635 . . 3 (( 𝑆 ∈ On ∧ (𝐴 +o 𝑆) = 𝐵) → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
8213, 78, 81sylancr 586 . 2 (𝐴𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
83 eqtr3 2766 . . . 4 (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
84 oacan 8604 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑥) = (𝐴 +o 𝑦) ↔ 𝑥 = 𝑦))
854, 84mp3an1 1448 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑥) = (𝐴 +o 𝑦) ↔ 𝑥 = 𝑦))
8683, 85imbitrid 244 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦))
8786rgen2 3205 . 2 𝑥 ∈ On ∀𝑦 ∈ On (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)
88 oveq2 7456 . . . 4 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
8988eqeq1d 2742 . . 3 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o 𝑦) = 𝐵))
9089reu4 3753 . 2 (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 ↔ (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)))
9182, 87, 90sylanblrc 589 1 (𝐴𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  {crab 3443  Vcvv 3488  wss 3976  c0 4352   cint 4970   ciun 5015  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  (class class class)co 7448   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526
This theorem is referenced by:  oawordeu  8611
  Copyright terms: Public domain W3C validator