MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnawordex Structured version   Visualization version   GIF version

Theorem nnawordex 8633
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnawordex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵))
21sseq2d 4013 . . . . . . 7 (𝑦 = 𝐵 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝐵)))
3 simplr 767 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
4 nnon 7857 . . . . . . . 8 (𝐵 ∈ ω → 𝐵 ∈ On)
53, 4syl 17 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 simpll 765 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
7 nnaword2 8626 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → 𝐵 ⊆ (𝐴 +o 𝐵))
83, 6, 7syl2anc 584 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +o 𝐵))
92, 5, 8elrabd 3684 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
10 intss1 4966 . . . . . 6 (𝐵 ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵)
119, 10syl 17 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵)
12 ssrab2 4076 . . . . . . . 8 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ On
139ne0d 4334 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ≠ ∅)
14 oninton 7779 . . . . . . . 8 (({𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On)
1512, 13, 14sylancr 587 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On)
16 eloni 6371 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On → Ord {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
1715, 16syl 17 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → Ord {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
18 ordom 7861 . . . . . 6 Ord ω
19 ordtr2 6405 . . . . . 6 ((Ord {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∧ Ord ω) → (( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵𝐵 ∈ ω) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω))
2017, 18, 19sylancl 586 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵𝐵 ∈ ω) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω))
2111, 3, 20mp2and 697 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω)
22 nna0 8600 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
2322ad2antrr 724 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o ∅) = 𝐴)
24 simpr 485 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
2523, 24eqsstrd 4019 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o ∅) ⊆ 𝐵)
26 oveq2 7413 . . . . . . . 8 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = (𝐴 +o ∅))
2726sseq1d 4012 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ → ((𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ 𝐵))
2825, 27syl5ibrcom 246 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵))
29 simprr 771 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)
3029oveq2d 7421 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = (𝐴 +o suc 𝑥))
316adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → 𝐴 ∈ ω)
32 simprl 769 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → 𝑥 ∈ ω)
33 nnasuc 8602 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3431, 32, 33syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3530, 34eqtrd 2772 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = suc (𝐴 +o 𝑥))
36 nnord 7859 . . . . . . . . . . 11 (𝐵 ∈ ω → Ord 𝐵)
373, 36syl 17 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → Ord 𝐵)
3837adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → Ord 𝐵)
39 nnon 7857 . . . . . . . . . . . . 13 (𝑥 ∈ ω → 𝑥 ∈ On)
4039adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → 𝑥 ∈ On)
41 vex 3478 . . . . . . . . . . . . . 14 𝑥 ∈ V
4241sucid 6443 . . . . . . . . . . . . 13 𝑥 ∈ suc 𝑥
43 simpr 485 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)
4442, 43eleqtrrid 2840 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → 𝑥 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
45 oveq2 7413 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o 𝑥))
4645sseq2d 4013 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝑥)))
4746onnminsb 7783 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑥 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → ¬ 𝐵 ⊆ (𝐴 +o 𝑥)))
4840, 44, 47sylc 65 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → ¬ 𝐵 ⊆ (𝐴 +o 𝑥))
4948adantl 482 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → ¬ 𝐵 ⊆ (𝐴 +o 𝑥))
50 nnacl 8607 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω)
5131, 32, 50syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o 𝑥) ∈ ω)
52 nnord 7859 . . . . . . . . . . . . 13 ((𝐴 +o 𝑥) ∈ ω → Ord (𝐴 +o 𝑥))
5351, 52syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → Ord (𝐴 +o 𝑥))
54 ordtri1 6394 . . . . . . . . . . . 12 ((Ord 𝐵 ∧ Ord (𝐴 +o 𝑥)) → (𝐵 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐵))
5538, 53, 54syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐵 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐵))
5655con2bid 354 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → ((𝐴 +o 𝑥) ∈ 𝐵 ↔ ¬ 𝐵 ⊆ (𝐴 +o 𝑥)))
5749, 56mpbird 256 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o 𝑥) ∈ 𝐵)
58 ordsucss 7802 . . . . . . . . 9 (Ord 𝐵 → ((𝐴 +o 𝑥) ∈ 𝐵 → suc (𝐴 +o 𝑥) ⊆ 𝐵))
5938, 57, 58sylc 65 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → suc (𝐴 +o 𝑥) ⊆ 𝐵)
6035, 59eqsstrd 4019 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵)
6160rexlimdvaa 3156 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (∃𝑥 ∈ ω {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥 → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵))
62 nn0suc 7882 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω → ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ ∨ ∃𝑥 ∈ ω {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥))
6321, 62syl 17 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ ∨ ∃𝑥 ∈ ω {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥))
6428, 61, 63mpjaod 858 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵)
65 onint 7774 . . . . . . 7 (({𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
6612, 13, 65sylancr 587 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
67 nfrab1 3451 . . . . . . . . 9 𝑦{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
6867nfint 4959 . . . . . . . 8 𝑦 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
69 nfcv 2903 . . . . . . . 8 𝑦On
70 nfcv 2903 . . . . . . . . 9 𝑦𝐵
71 nfcv 2903 . . . . . . . . . 10 𝑦𝐴
72 nfcv 2903 . . . . . . . . . 10 𝑦 +o
7371, 72, 68nfov 7435 . . . . . . . . 9 𝑦(𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
7470, 73nfss 3973 . . . . . . . 8 𝑦 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
75 oveq2 7413 . . . . . . . . 9 (𝑦 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐴 +o 𝑦) = (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
7675sseq2d 4013 . . . . . . . 8 (𝑦 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})))
7768, 69, 74, 76elrabf 3678 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ↔ ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On ∧ 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})))
7877simprbi 497 . . . . . 6 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
7966, 78syl 17 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
8064, 79eqssd 3998 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = 𝐵)
81 oveq2 7413 . . . . . 6 (𝑥 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐴 +o 𝑥) = (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
8281eqeq1d 2734 . . . . 5 (𝑥 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = 𝐵))
8382rspcev 3612 . . . 4 (( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω ∧ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
8421, 80, 83syl2anc 584 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
8584ex 413 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
86 nnaword1 8625 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
8786adantlr 713 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
88 sseq2 4007 . . . 4 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
8987, 88syl5ibcom 244 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝐵𝐴𝐵))
9089rexlimdva 3155 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵𝐴𝐵))
9185, 90impbid 211 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wrex 3070  {crab 3432  wss 3947  c0 4321   cint 4949  Ord word 6360  Oncon0 6361  suc csuc 6363  (class class class)co 7405  ωcom 7851   +o coa 8459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-oadd 8466
This theorem is referenced by:  nnaordex  8634  eldifsucnn  8659  unfilem1  9306  ttrcltr  9707  hashdom  14335  precsexlem6  27647  precsexlem7  27648
  Copyright terms: Public domain W3C validator