MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnawordex Structured version   Visualization version   GIF version

Theorem nnawordex 8552
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnawordex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵))
21sseq2d 3962 . . . . . . 7 (𝑦 = 𝐵 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝐵)))
3 simplr 768 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
4 nnon 7802 . . . . . . . 8 (𝐵 ∈ ω → 𝐵 ∈ On)
53, 4syl 17 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 simpll 766 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
7 nnaword2 8545 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → 𝐵 ⊆ (𝐴 +o 𝐵))
83, 6, 7syl2anc 584 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +o 𝐵))
92, 5, 8elrabd 3644 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
10 intss1 4911 . . . . . 6 (𝐵 ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵)
119, 10syl 17 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵)
12 ssrab2 4027 . . . . . . . 8 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ On
139ne0d 4289 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ≠ ∅)
14 oninton 7728 . . . . . . . 8 (({𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On)
1512, 13, 14sylancr 587 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On)
16 eloni 6316 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On → Ord {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
1715, 16syl 17 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → Ord {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
18 ordom 7806 . . . . . 6 Ord ω
19 ordtr2 6351 . . . . . 6 ((Ord {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∧ Ord ω) → (( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵𝐵 ∈ ω) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω))
2017, 18, 19sylancl 586 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵𝐵 ∈ ω) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω))
2111, 3, 20mp2and 699 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω)
22 nna0 8519 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
2322ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o ∅) = 𝐴)
24 simpr 484 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
2523, 24eqsstrd 3964 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o ∅) ⊆ 𝐵)
26 oveq2 7354 . . . . . . . 8 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = (𝐴 +o ∅))
2726sseq1d 3961 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ → ((𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ 𝐵))
2825, 27syl5ibrcom 247 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵))
29 simprr 772 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)
3029oveq2d 7362 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = (𝐴 +o suc 𝑥))
316adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → 𝐴 ∈ ω)
32 simprl 770 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → 𝑥 ∈ ω)
33 nnasuc 8521 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3431, 32, 33syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3530, 34eqtrd 2766 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = suc (𝐴 +o 𝑥))
36 nnord 7804 . . . . . . . . . . 11 (𝐵 ∈ ω → Ord 𝐵)
373, 36syl 17 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → Ord 𝐵)
3837adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → Ord 𝐵)
39 nnon 7802 . . . . . . . . . . . . 13 (𝑥 ∈ ω → 𝑥 ∈ On)
4039adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → 𝑥 ∈ On)
41 vex 3440 . . . . . . . . . . . . . 14 𝑥 ∈ V
4241sucid 6390 . . . . . . . . . . . . 13 𝑥 ∈ suc 𝑥
43 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)
4442, 43eleqtrrid 2838 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → 𝑥 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
45 oveq2 7354 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o 𝑥))
4645sseq2d 3962 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝑥)))
4746onnminsb 7732 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑥 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → ¬ 𝐵 ⊆ (𝐴 +o 𝑥)))
4840, 44, 47sylc 65 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → ¬ 𝐵 ⊆ (𝐴 +o 𝑥))
4948adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → ¬ 𝐵 ⊆ (𝐴 +o 𝑥))
50 nnacl 8526 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω)
5131, 32, 50syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o 𝑥) ∈ ω)
52 nnord 7804 . . . . . . . . . . . . 13 ((𝐴 +o 𝑥) ∈ ω → Ord (𝐴 +o 𝑥))
5351, 52syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → Ord (𝐴 +o 𝑥))
54 ordtri1 6339 . . . . . . . . . . . 12 ((Ord 𝐵 ∧ Ord (𝐴 +o 𝑥)) → (𝐵 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐵))
5538, 53, 54syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐵 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐵))
5655con2bid 354 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → ((𝐴 +o 𝑥) ∈ 𝐵 ↔ ¬ 𝐵 ⊆ (𝐴 +o 𝑥)))
5749, 56mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o 𝑥) ∈ 𝐵)
58 ordsucss 7748 . . . . . . . . 9 (Ord 𝐵 → ((𝐴 +o 𝑥) ∈ 𝐵 → suc (𝐴 +o 𝑥) ⊆ 𝐵))
5938, 57, 58sylc 65 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → suc (𝐴 +o 𝑥) ⊆ 𝐵)
6035, 59eqsstrd 3964 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵)
6160rexlimdvaa 3134 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (∃𝑥 ∈ ω {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥 → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵))
62 nn0suc 7824 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω → ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ ∨ ∃𝑥 ∈ ω {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥))
6321, 62syl 17 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ ∨ ∃𝑥 ∈ ω {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥))
6428, 61, 63mpjaod 860 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵)
65 onint 7723 . . . . . . 7 (({𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
6612, 13, 65sylancr 587 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
67 nfrab1 3415 . . . . . . . . 9 𝑦{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
6867nfint 4905 . . . . . . . 8 𝑦 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
69 nfcv 2894 . . . . . . . 8 𝑦On
70 nfcv 2894 . . . . . . . . 9 𝑦𝐵
71 nfcv 2894 . . . . . . . . . 10 𝑦𝐴
72 nfcv 2894 . . . . . . . . . 10 𝑦 +o
7371, 72, 68nfov 7376 . . . . . . . . 9 𝑦(𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
7470, 73nfss 3922 . . . . . . . 8 𝑦 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
75 oveq2 7354 . . . . . . . . 9 (𝑦 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐴 +o 𝑦) = (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
7675sseq2d 3962 . . . . . . . 8 (𝑦 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})))
7768, 69, 74, 76elrabf 3639 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ↔ ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On ∧ 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})))
7877simprbi 496 . . . . . 6 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
7966, 78syl 17 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
8064, 79eqssd 3947 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = 𝐵)
81 oveq2 7354 . . . . . 6 (𝑥 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐴 +o 𝑥) = (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
8281eqeq1d 2733 . . . . 5 (𝑥 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = 𝐵))
8382rspcev 3572 . . . 4 (( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω ∧ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
8421, 80, 83syl2anc 584 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
8584ex 412 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
86 nnaword1 8544 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
8786adantlr 715 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
88 sseq2 3956 . . . 4 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
8987, 88syl5ibcom 245 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝐵𝐴𝐵))
9089rexlimdva 3133 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵𝐴𝐵))
9185, 90impbid 212 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  wss 3897  c0 4280   cint 4895  Ord word 6305  Oncon0 6306  suc csuc 6308  (class class class)co 7346  ωcom 7796   +o coa 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389
This theorem is referenced by:  nnaordex  8553  eldifsucnn  8579  unfilem1  9189  ttrcltr  9606  hashdom  14286  precsexlem6  28150  precsexlem7  28151
  Copyright terms: Public domain W3C validator