MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnawordex Structured version   Visualization version   GIF version

Theorem nnawordex 8062
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnawordex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6982 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵))
21sseq2d 3882 . . . . . . 7 (𝑦 = 𝐵 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝐵)))
3 simplr 757 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
4 nnon 7400 . . . . . . . 8 (𝐵 ∈ ω → 𝐵 ∈ On)
53, 4syl 17 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 simpll 755 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
7 nnaword2 8055 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → 𝐵 ⊆ (𝐴 +o 𝐵))
83, 6, 7syl2anc 576 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +o 𝐵))
92, 5, 8elrabd 3591 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
10 intss1 4760 . . . . . 6 (𝐵 ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵)
119, 10syl 17 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵)
12 ssrab2 3939 . . . . . . . 8 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ On
139ne0d 4181 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ≠ ∅)
14 oninton 7329 . . . . . . . 8 (({𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On)
1512, 13, 14sylancr 579 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On)
16 eloni 6036 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On → Ord {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
1715, 16syl 17 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → Ord {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
18 ordom 7403 . . . . . 6 Ord ω
19 ordtr2 6070 . . . . . 6 ((Ord {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∧ Ord ω) → (( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵𝐵 ∈ ω) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω))
2017, 18, 19sylancl 578 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ 𝐵𝐵 ∈ ω) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω))
2111, 3, 20mp2and 687 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω)
22 nna0 8029 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
2322ad2antrr 714 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o ∅) = 𝐴)
24 simpr 477 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
2523, 24eqsstrd 3888 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o ∅) ⊆ 𝐵)
26 oveq2 6982 . . . . . . . 8 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = (𝐴 +o ∅))
2726sseq1d 3881 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ → ((𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ 𝐵))
2825, 27syl5ibrcom 239 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵))
29 simprr 761 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)
3029oveq2d 6990 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = (𝐴 +o suc 𝑥))
316adantr 473 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → 𝐴 ∈ ω)
32 simprl 759 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → 𝑥 ∈ ω)
33 nnasuc 8031 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3431, 32, 33syl2anc 576 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3530, 34eqtrd 2807 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = suc (𝐴 +o 𝑥))
36 nnord 7402 . . . . . . . . . . 11 (𝐵 ∈ ω → Ord 𝐵)
373, 36syl 17 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → Ord 𝐵)
3837adantr 473 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → Ord 𝐵)
39 nnon 7400 . . . . . . . . . . . . 13 (𝑥 ∈ ω → 𝑥 ∈ On)
4039adantr 473 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → 𝑥 ∈ On)
41 vex 3411 . . . . . . . . . . . . . 14 𝑥 ∈ V
4241sucid 6105 . . . . . . . . . . . . 13 𝑥 ∈ suc 𝑥
43 simpr 477 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)
4442, 43syl5eleqr 2866 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → 𝑥 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
45 oveq2 6982 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o 𝑥))
4645sseq2d 3882 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o 𝑥)))
4746onnminsb 7333 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑥 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → ¬ 𝐵 ⊆ (𝐴 +o 𝑥)))
4840, 44, 47sylc 65 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥) → ¬ 𝐵 ⊆ (𝐴 +o 𝑥))
4948adantl 474 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → ¬ 𝐵 ⊆ (𝐴 +o 𝑥))
50 nnacl 8036 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω)
5131, 32, 50syl2anc 576 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o 𝑥) ∈ ω)
52 nnord 7402 . . . . . . . . . . . . 13 ((𝐴 +o 𝑥) ∈ ω → Ord (𝐴 +o 𝑥))
5351, 52syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → Ord (𝐴 +o 𝑥))
54 ordtri1 6059 . . . . . . . . . . . 12 ((Ord 𝐵 ∧ Ord (𝐴 +o 𝑥)) → (𝐵 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐵))
5538, 53, 54syl2anc 576 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐵 ⊆ (𝐴 +o 𝑥) ↔ ¬ (𝐴 +o 𝑥) ∈ 𝐵))
5655con2bid 347 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → ((𝐴 +o 𝑥) ∈ 𝐵 ↔ ¬ 𝐵 ⊆ (𝐴 +o 𝑥)))
5749, 56mpbird 249 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o 𝑥) ∈ 𝐵)
58 ordsucss 7347 . . . . . . . . 9 (Ord 𝐵 → ((𝐴 +o 𝑥) ∈ 𝐵 → suc (𝐴 +o 𝑥) ⊆ 𝐵))
5938, 57, 58sylc 65 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → suc (𝐴 +o 𝑥) ⊆ 𝐵)
6035, 59eqsstrd 3888 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ (𝑥 ∈ ω ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥)) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵)
6160rexlimdvaa 3223 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (∃𝑥 ∈ ω {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥 → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵))
62 nn0suc 7419 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω → ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ ∨ ∃𝑥 ∈ ω {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥))
6321, 62syl 17 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = ∅ ∨ ∃𝑥 ∈ ω {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} = suc 𝑥))
6428, 61, 63mpjaod 847 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) ⊆ 𝐵)
65 onint 7324 . . . . . . 7 (({𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
6612, 13, 65sylancr 579 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
67 nfrab1 3317 . . . . . . . . 9 𝑦{𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
6867nfint 4755 . . . . . . . 8 𝑦 {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}
69 nfcv 2925 . . . . . . . 8 𝑦On
70 nfcv 2925 . . . . . . . . 9 𝑦𝐵
71 nfcv 2925 . . . . . . . . . 10 𝑦𝐴
72 nfcv 2925 . . . . . . . . . 10 𝑦 +o
7371, 72, 68nfov 7004 . . . . . . . . 9 𝑦(𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
7470, 73nfss 3844 . . . . . . . 8 𝑦 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})
75 oveq2 6982 . . . . . . . . 9 (𝑦 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐴 +o 𝑦) = (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
7675sseq2d 3882 . . . . . . . 8 (𝑦 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐵 ⊆ (𝐴 +o 𝑦) ↔ 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})))
7768, 69, 74, 76elrabf 3584 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ↔ ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ On ∧ 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)})))
7877simprbi 489 . . . . . 6 ( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
7966, 78syl 17 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
8064, 79eqssd 3868 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = 𝐵)
81 oveq2 6982 . . . . . 6 (𝑥 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → (𝐴 +o 𝑥) = (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}))
8281eqeq1d 2773 . . . . 5 (𝑥 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = 𝐵))
8382rspcev 3528 . . . 4 (( {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ∈ ω ∧ (𝐴 +o {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)}) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
8421, 80, 83syl2anc 576 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
8584ex 405 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
86 nnaword1 8054 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
8786adantlr 703 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑥))
88 sseq2 3876 . . . 4 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ⊆ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
8987, 88syl5ibcom 237 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝐵𝐴𝐵))
9089rexlimdva 3222 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵𝐴𝐵))
9185, 90impbid 204 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 834   = wceq 1508  wcel 2051  wne 2960  wrex 3082  {crab 3085  wss 3822  c0 4172   cint 4745  Ord word 6025  Oncon0 6026  suc csuc 6028  (class class class)co 6974  ωcom 7394   +o coa 7900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-oadd 7907
This theorem is referenced by:  nnaordex  8063  unfilem1  8575  hashdom  13551
  Copyright terms: Public domain W3C validator