| Step | Hyp | Ref
| Expression |
| 1 | | naddwordnexlem4.s |
. . . . 5
⊢ 𝑆 = {𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)} |
| 2 | 1 | ssrab3 4062 |
. . . 4
⊢ 𝑆 ⊆ On |
| 3 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑦 = 𝐷 → (𝐶 +o 𝑦) = (𝐶 +o 𝐷)) |
| 4 | 3 | sseq2d 3996 |
. . . . . . 7
⊢ (𝑦 = 𝐷 → (𝐷 ⊆ (𝐶 +o 𝑦) ↔ 𝐷 ⊆ (𝐶 +o 𝐷))) |
| 5 | | naddwordnex.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ On) |
| 6 | | naddwordnex.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| 7 | | onelon 6382 |
. . . . . . . . 9
⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ 𝐷) → 𝐶 ∈ On) |
| 8 | 5, 6, 7 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ On) |
| 9 | | oaword2 8570 |
. . . . . . . 8
⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ On) → 𝐷 ⊆ (𝐶 +o 𝐷)) |
| 10 | 5, 8, 9 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ⊆ (𝐶 +o 𝐷)) |
| 11 | 4, 5, 10 | elrabd 3678 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ {𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)}) |
| 12 | 11, 1 | eleqtrrdi 2846 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| 13 | 12 | ne0d 4322 |
. . . 4
⊢ (𝜑 → 𝑆 ≠ ∅) |
| 14 | | oninton 7794 |
. . . 4
⊢ ((𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∩ 𝑆
∈ On) |
| 15 | 2, 13, 14 | sylancr 587 |
. . 3
⊢ (𝜑 → ∩ 𝑆
∈ On) |
| 16 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ∅ → (𝐶 +o 𝑦) = (𝐶 +o ∅)) |
| 17 | | oa0 8533 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ On → (𝐶 +o ∅) = 𝐶) |
| 18 | 8, 17 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 +o ∅) = 𝐶) |
| 19 | 16, 18 | sylan9eqr 2793 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 = ∅) → (𝐶 +o 𝑦) = 𝐶) |
| 20 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 = ∅) → 𝐶 ∈ 𝐷) |
| 21 | 19, 20 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 = ∅) → (𝐶 +o 𝑦) ∈ 𝐷) |
| 22 | 21 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 = ∅ → (𝐶 +o 𝑦) ∈ 𝐷)) |
| 23 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (𝑦 = ∅ → (𝐶 +o 𝑦) ∈ 𝐷)) |
| 24 | 23 | con3d 152 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (¬ (𝐶 +o 𝑦) ∈ 𝐷 → ¬ 𝑦 = ∅)) |
| 25 | | oacl 8552 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶 +o 𝑦) ∈ On) |
| 26 | 8, 25 | sylan 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (𝐶 +o 𝑦) ∈ On) |
| 27 | | ontri1 6391 |
. . . . . . . . 9
⊢ ((𝐷 ∈ On ∧ (𝐶 +o 𝑦) ∈ On) → (𝐷 ⊆ (𝐶 +o 𝑦) ↔ ¬ (𝐶 +o 𝑦) ∈ 𝐷)) |
| 28 | 5, 26, 27 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (𝐷 ⊆ (𝐶 +o 𝑦) ↔ ¬ (𝐶 +o 𝑦) ∈ 𝐷)) |
| 29 | | on0eln0 6414 |
. . . . . . . . . 10
⊢ (𝑦 ∈ On → (∅
∈ 𝑦 ↔ 𝑦 ≠ ∅)) |
| 30 | | df-ne 2934 |
. . . . . . . . . 10
⊢ (𝑦 ≠ ∅ ↔ ¬ 𝑦 = ∅) |
| 31 | 29, 30 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑦 ∈ On → (∅
∈ 𝑦 ↔ ¬ 𝑦 = ∅)) |
| 32 | 31 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (∅ ∈ 𝑦 ↔ ¬ 𝑦 = ∅)) |
| 33 | 24, 28, 32 | 3imtr4d 294 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (𝐷 ⊆ (𝐶 +o 𝑦) → ∅ ∈ 𝑦)) |
| 34 | 33 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ On → (𝐷 ⊆ (𝐶 +o 𝑦) → ∅ ∈ 𝑦))) |
| 35 | 34 | ralrimiv 3132 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ On (𝐷 ⊆ (𝐶 +o 𝑦) → ∅ ∈ 𝑦)) |
| 36 | | 0ex 5282 |
. . . . . 6
⊢ ∅
∈ V |
| 37 | 36 | elintrab 4941 |
. . . . 5
⊢ (∅
∈ ∩ {𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)} ↔ ∀𝑦 ∈ On (𝐷 ⊆ (𝐶 +o 𝑦) → ∅ ∈ 𝑦)) |
| 38 | 35, 37 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∅ ∈ ∩ {𝑦
∈ On ∣ 𝐷 ⊆
(𝐶 +o 𝑦)}) |
| 39 | 1 | inteqi 4931 |
. . . 4
⊢ ∩ 𝑆 =
∩ {𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)} |
| 40 | 38, 39 | eleqtrrdi 2846 |
. . 3
⊢ (𝜑 → ∅ ∈ ∩ 𝑆) |
| 41 | | ondif1 8518 |
. . 3
⊢ (∩ 𝑆
∈ (On ∖ 1o) ↔ (∩ 𝑆 ∈ On ∧ ∅ ∈
∩ 𝑆)) |
| 42 | 15, 40, 41 | sylanbrc 583 |
. 2
⊢ (𝜑 → ∩ 𝑆
∈ (On ∖ 1o)) |
| 43 | | onzsl 7846 |
. . . . . 6
⊢ (∩ 𝑆
∈ On ↔ (∩ 𝑆 = ∅ ∨ ∃𝑧 ∈ On ∩ 𝑆 = suc 𝑧 ∨ (∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆))) |
| 44 | 15, 43 | sylib 218 |
. . . . 5
⊢ (𝜑 → (∩ 𝑆 =
∅ ∨ ∃𝑧
∈ On ∩ 𝑆 = suc 𝑧 ∨ (∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆))) |
| 45 | | oveq2 7418 |
. . . . . . . . 9
⊢ (∩ 𝑆 =
∅ → (𝐶
+o ∩ 𝑆) = (𝐶 +o ∅)) |
| 46 | 45, 18 | sylan9eqr 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∩ 𝑆 =
∅) → (𝐶
+o ∩ 𝑆) = 𝐶) |
| 47 | | onelpss 6397 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 ∈ 𝐷 ↔ (𝐶 ⊆ 𝐷 ∧ 𝐶 ≠ 𝐷))) |
| 48 | 8, 5, 47 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 ∈ 𝐷 ↔ (𝐶 ⊆ 𝐷 ∧ 𝐶 ≠ 𝐷))) |
| 49 | 6, 48 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 ⊆ 𝐷 ∧ 𝐶 ≠ 𝐷)) |
| 50 | 49 | simpld 494 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| 51 | 50 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∩ 𝑆 =
∅) → 𝐶 ⊆
𝐷) |
| 52 | 46, 51 | eqsstrd 3998 |
. . . . . . 7
⊢ ((𝜑 ∧ ∩ 𝑆 =
∅) → (𝐶
+o ∩ 𝑆) ⊆ 𝐷) |
| 53 | 52 | ex 412 |
. . . . . 6
⊢ (𝜑 → (∩ 𝑆 =
∅ → (𝐶
+o ∩ 𝑆) ⊆ 𝐷)) |
| 54 | | oveq2 7418 |
. . . . . . . . 9
⊢ (∩ 𝑆 =
suc 𝑧 → (𝐶 +o ∩ 𝑆) =
(𝐶 +o suc 𝑧)) |
| 55 | | oasuc 8541 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ On ∧ 𝑧 ∈ On) → (𝐶 +o suc 𝑧) = suc (𝐶 +o 𝑧)) |
| 56 | 8, 55 | sylan 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (𝐶 +o suc 𝑧) = suc (𝐶 +o 𝑧)) |
| 57 | 54, 56 | sylan9eqr 2793 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ ∩ 𝑆 =
suc 𝑧) → (𝐶 +o ∩ 𝑆) =
suc (𝐶 +o 𝑧)) |
| 58 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
| 59 | 58 | sucid 6441 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ suc 𝑧 |
| 60 | | eleq2 2824 |
. . . . . . . . . . . 12
⊢ (∩ 𝑆 =
suc 𝑧 → (𝑧 ∈ ∩ 𝑆
↔ 𝑧 ∈ suc 𝑧)) |
| 61 | 59, 60 | mpbiri 258 |
. . . . . . . . . . 11
⊢ (∩ 𝑆 =
suc 𝑧 → 𝑧 ∈ ∩ 𝑆) |
| 62 | 61 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (∩ 𝑆 =
suc 𝑧 → 𝑧 ∈ ∩ 𝑆)) |
| 63 | 39 | eleq2i 2827 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ∩ 𝑆
↔ 𝑧 ∈ ∩ {𝑦
∈ On ∣ 𝐷 ⊆
(𝐶 +o 𝑦)}) |
| 64 | | oveq2 7418 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝐶 +o 𝑦) = (𝐶 +o 𝑧)) |
| 65 | 64 | sseq2d 3996 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝐷 ⊆ (𝐶 +o 𝑦) ↔ 𝐷 ⊆ (𝐶 +o 𝑧))) |
| 66 | 65 | onnminsb 7798 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ On → (𝑧 ∈ ∩ {𝑦
∈ On ∣ 𝐷 ⊆
(𝐶 +o 𝑦)} → ¬ 𝐷 ⊆ (𝐶 +o 𝑧))) |
| 67 | 66 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (𝑧 ∈ ∩ {𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)} → ¬ 𝐷 ⊆ (𝐶 +o 𝑧))) |
| 68 | 63, 67 | biimtrid 242 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (𝑧 ∈ ∩ 𝑆 → ¬ 𝐷 ⊆ (𝐶 +o 𝑧))) |
| 69 | | oacl 8552 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ 𝑧 ∈ On) → (𝐶 +o 𝑧) ∈ On) |
| 70 | 8, 69 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (𝐶 +o 𝑧) ∈ On) |
| 71 | | ontri1 6391 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ On ∧ (𝐶 +o 𝑧) ∈ On) → (𝐷 ⊆ (𝐶 +o 𝑧) ↔ ¬ (𝐶 +o 𝑧) ∈ 𝐷)) |
| 72 | 5, 70, 71 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (𝐷 ⊆ (𝐶 +o 𝑧) ↔ ¬ (𝐶 +o 𝑧) ∈ 𝐷)) |
| 73 | 72 | con2bid 354 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ On) → ((𝐶 +o 𝑧) ∈ 𝐷 ↔ ¬ 𝐷 ⊆ (𝐶 +o 𝑧))) |
| 74 | 68, 73 | sylibrd 259 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (𝑧 ∈ ∩ 𝑆 → (𝐶 +o 𝑧) ∈ 𝐷)) |
| 75 | | onsucss 43257 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ On → ((𝐶 +o 𝑧) ∈ 𝐷 → suc (𝐶 +o 𝑧) ⊆ 𝐷)) |
| 76 | 5, 75 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐶 +o 𝑧) ∈ 𝐷 → suc (𝐶 +o 𝑧) ⊆ 𝐷)) |
| 77 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ On) → ((𝐶 +o 𝑧) ∈ 𝐷 → suc (𝐶 +o 𝑧) ⊆ 𝐷)) |
| 78 | 62, 74, 77 | 3syld 60 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (∩ 𝑆 =
suc 𝑧 → suc (𝐶 +o 𝑧) ⊆ 𝐷)) |
| 79 | 78 | imp 406 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ ∩ 𝑆 =
suc 𝑧) → suc (𝐶 +o 𝑧) ⊆ 𝐷) |
| 80 | 57, 79 | eqsstrd 3998 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ ∩ 𝑆 =
suc 𝑧) → (𝐶 +o ∩ 𝑆)
⊆ 𝐷) |
| 81 | 80 | rexlimdva2 3144 |
. . . . . 6
⊢ (𝜑 → (∃𝑧 ∈ On ∩ 𝑆 = suc 𝑧 → (𝐶 +o ∩
𝑆) ⊆ 𝐷)) |
| 82 | | oalim 8549 |
. . . . . . . . 9
⊢ ((𝐶 ∈ On ∧ (∩ 𝑆
∈ V ∧ Lim ∩ 𝑆)) → (𝐶 +o ∩
𝑆) = ∪ 𝑧 ∈ ∩ 𝑆(𝐶 +o 𝑧)) |
| 83 | 8, 82 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∩ 𝑆
∈ V ∧ Lim ∩ 𝑆)) → (𝐶 +o ∩
𝑆) = ∪ 𝑧 ∈ ∩ 𝑆(𝐶 +o 𝑧)) |
| 84 | | onelon 6382 |
. . . . . . . . . . . . . . 15
⊢ ((∩ 𝑆
∈ On ∧ 𝑧 ∈
∩ 𝑆) → 𝑧 ∈ On) |
| 85 | 15, 84 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ ∩ 𝑆) → 𝑧 ∈ On) |
| 86 | 85 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑧 ∈ ∩ 𝑆 → 𝑧 ∈ On)) |
| 87 | 86 | ancrd 551 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ ∩ 𝑆 → (𝑧 ∈ On ∧ 𝑧 ∈ ∩ 𝑆))) |
| 88 | 74 | expimpd 453 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑧 ∈ On ∧ 𝑧 ∈ ∩ 𝑆) → (𝐶 +o 𝑧) ∈ 𝐷)) |
| 89 | | onelss 6399 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ On → ((𝐶 +o 𝑧) ∈ 𝐷 → (𝐶 +o 𝑧) ⊆ 𝐷)) |
| 90 | 5, 89 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶 +o 𝑧) ∈ 𝐷 → (𝐶 +o 𝑧) ⊆ 𝐷)) |
| 91 | 87, 88, 90 | 3syld 60 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑧 ∈ ∩ 𝑆 → (𝐶 +o 𝑧) ⊆ 𝐷)) |
| 92 | 91 | ralrimiv 3132 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ ∩ 𝑆(𝐶 +o 𝑧) ⊆ 𝐷) |
| 93 | | iunss 5026 |
. . . . . . . . . 10
⊢ (∪ 𝑧 ∈ ∩ 𝑆(𝐶 +o 𝑧) ⊆ 𝐷 ↔ ∀𝑧 ∈ ∩ 𝑆(𝐶 +o 𝑧) ⊆ 𝐷) |
| 94 | 92, 93 | sylibr 234 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑧 ∈ ∩ 𝑆(𝐶 +o 𝑧) ⊆ 𝐷) |
| 95 | 94 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∩ 𝑆
∈ V ∧ Lim ∩ 𝑆)) → ∪ 𝑧 ∈ ∩ 𝑆(𝐶 +o 𝑧) ⊆ 𝐷) |
| 96 | 83, 95 | eqsstrd 3998 |
. . . . . . 7
⊢ ((𝜑 ∧ (∩ 𝑆
∈ V ∧ Lim ∩ 𝑆)) → (𝐶 +o ∩
𝑆) ⊆ 𝐷) |
| 97 | 96 | ex 412 |
. . . . . 6
⊢ (𝜑 → ((∩ 𝑆
∈ V ∧ Lim ∩ 𝑆) → (𝐶 +o ∩
𝑆) ⊆ 𝐷)) |
| 98 | 53, 81, 97 | 3jaod 1431 |
. . . . 5
⊢ (𝜑 → ((∩ 𝑆 =
∅ ∨ ∃𝑧
∈ On ∩ 𝑆 = suc 𝑧 ∨ (∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆))
→ (𝐶 +o
∩ 𝑆) ⊆ 𝐷)) |
| 99 | 44, 98 | mpd 15 |
. . . 4
⊢ (𝜑 → (𝐶 +o ∩
𝑆) ⊆ 𝐷) |
| 100 | 4 | rspcev 3606 |
. . . . . . 7
⊢ ((𝐷 ∈ On ∧ 𝐷 ⊆ (𝐶 +o 𝐷)) → ∃𝑦 ∈ On 𝐷 ⊆ (𝐶 +o 𝑦)) |
| 101 | 5, 10, 100 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ∃𝑦 ∈ On 𝐷 ⊆ (𝐶 +o 𝑦)) |
| 102 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐷 |
| 103 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐶 |
| 104 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑦
+o |
| 105 | | nfrab1 3441 |
. . . . . . . . . 10
⊢
Ⅎ𝑦{𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)} |
| 106 | 105 | nfint 4937 |
. . . . . . . . 9
⊢
Ⅎ𝑦∩ {𝑦
∈ On ∣ 𝐷 ⊆
(𝐶 +o 𝑦)} |
| 107 | 103, 104,
106 | nfov 7440 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝐶 +o ∩
{𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)}) |
| 108 | 102, 107 | nfss 3956 |
. . . . . . 7
⊢
Ⅎ𝑦 𝐷 ⊆ (𝐶 +o ∩
{𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)}) |
| 109 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑦 = ∩
{𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)} → (𝐶 +o 𝑦) = (𝐶 +o ∩
{𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)})) |
| 110 | 109 | sseq2d 3996 |
. . . . . . 7
⊢ (𝑦 = ∩
{𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)} → (𝐷 ⊆ (𝐶 +o 𝑦) ↔ 𝐷 ⊆ (𝐶 +o ∩
{𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)}))) |
| 111 | 108, 110 | onminsb 7793 |
. . . . . 6
⊢
(∃𝑦 ∈ On
𝐷 ⊆ (𝐶 +o 𝑦) → 𝐷 ⊆ (𝐶 +o ∩
{𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)})) |
| 112 | 101, 111 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐷 ⊆ (𝐶 +o ∩
{𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)})) |
| 113 | 39 | oveq2i 7421 |
. . . . 5
⊢ (𝐶 +o ∩ 𝑆) =
(𝐶 +o ∩ {𝑦
∈ On ∣ 𝐷 ⊆
(𝐶 +o 𝑦)}) |
| 114 | 112, 113 | sseqtrrdi 4005 |
. . . 4
⊢ (𝜑 → 𝐷 ⊆ (𝐶 +o ∩
𝑆)) |
| 115 | 99, 114 | eqssd 3981 |
. . 3
⊢ (𝜑 → (𝐶 +o ∩
𝑆) = 𝐷) |
| 116 | | omelon 9665 |
. . . . . 6
⊢ ω
∈ On |
| 117 | | omcl 8553 |
. . . . . 6
⊢ ((ω
∈ On ∧ 𝐷 ∈
On) → (ω ·o 𝐷) ∈ On) |
| 118 | 116, 5, 117 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (ω
·o 𝐷)
∈ On) |
| 119 | 116 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ω ∈
On) |
| 120 | | naddwordnex.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ 𝑀) |
| 121 | | naddwordnex.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ω) |
| 122 | 120, 121 | jca 511 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω)) |
| 123 | | ontr1 6404 |
. . . . . . 7
⊢ (ω
∈ On → ((𝑁 ∈
𝑀 ∧ 𝑀 ∈ ω) → 𝑁 ∈ ω)) |
| 124 | 119, 122,
123 | sylc 65 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ω) |
| 125 | | nnon 7872 |
. . . . . 6
⊢ (𝑁 ∈ ω → 𝑁 ∈ On) |
| 126 | 124, 125 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ On) |
| 127 | | oaword1 8569 |
. . . . 5
⊢
(((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → (ω
·o 𝐷)
⊆ ((ω ·o 𝐷) +o 𝑁)) |
| 128 | 118, 126,
127 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (ω
·o 𝐷)
⊆ ((ω ·o 𝐷) +o 𝑁)) |
| 129 | | naddwordnex.a |
. . . . . 6
⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) |
| 130 | 129 | oveq1d 7425 |
. . . . 5
⊢ (𝜑 → (𝐴 +o (ω ·o
∩ 𝑆)) = (((ω ·o 𝐶) +o 𝑀) +o (ω
·o ∩ 𝑆))) |
| 131 | | omcl 8553 |
. . . . . . 7
⊢ ((ω
∈ On ∧ 𝐶 ∈
On) → (ω ·o 𝐶) ∈ On) |
| 132 | 116, 8, 131 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (ω
·o 𝐶)
∈ On) |
| 133 | | nnon 7872 |
. . . . . . 7
⊢ (𝑀 ∈ ω → 𝑀 ∈ On) |
| 134 | 121, 133 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ On) |
| 135 | | omcl 8553 |
. . . . . . 7
⊢ ((ω
∈ On ∧ ∩ 𝑆 ∈ On) → (ω
·o ∩ 𝑆) ∈ On) |
| 136 | 116, 15, 135 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (ω
·o ∩ 𝑆) ∈ On) |
| 137 | | oaass 8578 |
. . . . . 6
⊢
(((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On ∧ (ω
·o ∩ 𝑆) ∈ On) → (((ω
·o 𝐶)
+o 𝑀)
+o (ω ·o ∩ 𝑆)) = ((ω
·o 𝐶)
+o (𝑀
+o (ω ·o ∩ 𝑆)))) |
| 138 | 132, 134,
136, 137 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (((ω
·o 𝐶)
+o 𝑀)
+o (ω ·o ∩ 𝑆)) = ((ω
·o 𝐶)
+o (𝑀
+o (ω ·o ∩ 𝑆)))) |
| 139 | 15, 116 | jctil 519 |
. . . . . . . . 9
⊢ (𝜑 → (ω ∈ On ∧
∩ 𝑆 ∈ On)) |
| 140 | | omword1 8590 |
. . . . . . . . 9
⊢
(((ω ∈ On ∧ ∩ 𝑆 ∈ On) ∧ ∅ ∈
∩ 𝑆) → ω ⊆ (ω
·o ∩ 𝑆)) |
| 141 | 139, 40, 140 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ω ⊆ (ω
·o ∩ 𝑆)) |
| 142 | | oaabs 8665 |
. . . . . . . 8
⊢ (((𝑀 ∈ ω ∧ (ω
·o ∩ 𝑆) ∈ On) ∧ ω ⊆ (ω
·o ∩ 𝑆)) → (𝑀 +o (ω ·o
∩ 𝑆)) = (ω ·o ∩ 𝑆)) |
| 143 | 121, 136,
141, 142 | syl21anc 837 |
. . . . . . 7
⊢ (𝜑 → (𝑀 +o (ω ·o
∩ 𝑆)) = (ω ·o ∩ 𝑆)) |
| 144 | 143 | oveq2d 7426 |
. . . . . 6
⊢ (𝜑 → ((ω
·o 𝐶)
+o (𝑀
+o (ω ·o ∩ 𝑆))) = ((ω
·o 𝐶)
+o (ω ·o ∩ 𝑆))) |
| 145 | | odi 8596 |
. . . . . . 7
⊢ ((ω
∈ On ∧ 𝐶 ∈ On
∧ ∩ 𝑆 ∈ On) → (ω
·o (𝐶
+o ∩ 𝑆)) = ((ω ·o 𝐶) +o (ω
·o ∩ 𝑆))) |
| 146 | 119, 8, 15, 145 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (ω
·o (𝐶
+o ∩ 𝑆)) = ((ω ·o 𝐶) +o (ω
·o ∩ 𝑆))) |
| 147 | 115 | oveq2d 7426 |
. . . . . 6
⊢ (𝜑 → (ω
·o (𝐶
+o ∩ 𝑆)) = (ω ·o 𝐷)) |
| 148 | 144, 146,
147 | 3eqtr2d 2777 |
. . . . 5
⊢ (𝜑 → ((ω
·o 𝐶)
+o (𝑀
+o (ω ·o ∩ 𝑆))) = (ω
·o 𝐷)) |
| 149 | 130, 138,
148 | 3eqtrd 2775 |
. . . 4
⊢ (𝜑 → (𝐴 +o (ω ·o
∩ 𝑆)) = (ω ·o 𝐷)) |
| 150 | | naddwordnex.b |
. . . 4
⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) |
| 151 | 128, 149,
150 | 3sstr4d 4019 |
. . 3
⊢ (𝜑 → (𝐴 +o (ω ·o
∩ 𝑆)) ⊆ 𝐵) |
| 152 | | naddcl 8694 |
. . . . . . . 8
⊢
(((ω ·o 𝐶) ∈ On ∧ (ω
·o ∩ 𝑆) ∈ On) → ((ω
·o 𝐶) +no
(ω ·o ∩ 𝑆)) ∈ On) |
| 153 | 132, 136,
152 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((ω
·o 𝐶) +no
(ω ·o ∩ 𝑆)) ∈ On) |
| 154 | 118, 153,
134 | 3jca 1128 |
. . . . . 6
⊢ (𝜑 → ((ω
·o 𝐷)
∈ On ∧ ((ω ·o 𝐶) +no (ω ·o ∩ 𝑆))
∈ On ∧ 𝑀 ∈
On)) |
| 155 | 147, 146 | eqtr3d 2773 |
. . . . . . 7
⊢ (𝜑 → (ω
·o 𝐷) =
((ω ·o 𝐶) +o (ω
·o ∩ 𝑆))) |
| 156 | | naddgeoa 43385 |
. . . . . . . 8
⊢
(((ω ·o 𝐶) ∈ On ∧ (ω
·o ∩ 𝑆) ∈ On) → ((ω
·o 𝐶)
+o (ω ·o ∩ 𝑆)) ⊆ ((ω
·o 𝐶) +no
(ω ·o ∩ 𝑆))) |
| 157 | 132, 136,
156 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((ω
·o 𝐶)
+o (ω ·o ∩ 𝑆)) ⊆ ((ω
·o 𝐶) +no
(ω ·o ∩ 𝑆))) |
| 158 | 155, 157 | eqsstrd 3998 |
. . . . . 6
⊢ (𝜑 → (ω
·o 𝐷)
⊆ ((ω ·o 𝐶) +no (ω ·o ∩ 𝑆))) |
| 159 | | oawordri 8567 |
. . . . . 6
⊢
(((ω ·o 𝐷) ∈ On ∧ ((ω
·o 𝐶) +no
(ω ·o ∩ 𝑆)) ∈ On ∧ 𝑀 ∈ On) → ((ω
·o 𝐷)
⊆ ((ω ·o 𝐶) +no (ω ·o ∩ 𝑆))
→ ((ω ·o 𝐷) +o 𝑀) ⊆ (((ω ·o
𝐶) +no (ω
·o ∩ 𝑆)) +o 𝑀))) |
| 160 | 154, 158,
159 | sylc 65 |
. . . . 5
⊢ (𝜑 → ((ω
·o 𝐷)
+o 𝑀) ⊆
(((ω ·o 𝐶) +no (ω ·o ∩ 𝑆))
+o 𝑀)) |
| 161 | | naddonnn 43386 |
. . . . . . . . 9
⊢
(((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ ω) → ((ω
·o 𝐶)
+o 𝑀) =
((ω ·o 𝐶) +no 𝑀)) |
| 162 | 132, 121,
161 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((ω
·o 𝐶)
+o 𝑀) =
((ω ·o 𝐶) +no 𝑀)) |
| 163 | 129, 162 | eqtrd 2771 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +no 𝑀)) |
| 164 | 163 | oveq1d 7425 |
. . . . . 6
⊢ (𝜑 → (𝐴 +no (ω ·o ∩ 𝑆))
= (((ω ·o 𝐶) +no 𝑀) +no (ω ·o ∩ 𝑆))) |
| 165 | | naddass 8713 |
. . . . . . . 8
⊢
(((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On ∧ (ω
·o ∩ 𝑆) ∈ On) → (((ω
·o 𝐶) +no
𝑀) +no (ω
·o ∩ 𝑆)) = ((ω ·o 𝐶) +no (𝑀 +no (ω ·o ∩ 𝑆)))) |
| 166 | 132, 134,
136, 165 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (((ω
·o 𝐶) +no
𝑀) +no (ω
·o ∩ 𝑆)) = ((ω ·o 𝐶) +no (𝑀 +no (ω ·o ∩ 𝑆)))) |
| 167 | | naddcom 8699 |
. . . . . . . . 9
⊢ ((𝑀 ∈ On ∧ (ω
·o ∩ 𝑆) ∈ On) → (𝑀 +no (ω ·o ∩ 𝑆))
= ((ω ·o ∩ 𝑆) +no 𝑀)) |
| 168 | 134, 136,
167 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 +no (ω ·o ∩ 𝑆))
= ((ω ·o ∩ 𝑆) +no 𝑀)) |
| 169 | 168 | oveq2d 7426 |
. . . . . . 7
⊢ (𝜑 → ((ω
·o 𝐶) +no
(𝑀 +no (ω
·o ∩ 𝑆))) = ((ω ·o 𝐶) +no ((ω
·o ∩ 𝑆) +no 𝑀))) |
| 170 | | naddonnn 43386 |
. . . . . . . . 9
⊢
((((ω ·o 𝐶) +no (ω ·o ∩ 𝑆))
∈ On ∧ 𝑀 ∈
ω) → (((ω ·o 𝐶) +no (ω ·o ∩ 𝑆))
+o 𝑀) =
(((ω ·o 𝐶) +no (ω ·o ∩ 𝑆))
+no 𝑀)) |
| 171 | 153, 121,
170 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (((ω
·o 𝐶) +no
(ω ·o ∩ 𝑆)) +o 𝑀) = (((ω ·o 𝐶) +no (ω
·o ∩ 𝑆)) +no 𝑀)) |
| 172 | | naddass 8713 |
. . . . . . . . 9
⊢
(((ω ·o 𝐶) ∈ On ∧ (ω
·o ∩ 𝑆) ∈ On ∧ 𝑀 ∈ On) → (((ω
·o 𝐶) +no
(ω ·o ∩ 𝑆)) +no 𝑀) = ((ω ·o 𝐶) +no ((ω
·o ∩ 𝑆) +no 𝑀))) |
| 173 | 132, 136,
134, 172 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (((ω
·o 𝐶) +no
(ω ·o ∩ 𝑆)) +no 𝑀) = ((ω ·o 𝐶) +no ((ω
·o ∩ 𝑆) +no 𝑀))) |
| 174 | 171, 173 | eqtr2d 2772 |
. . . . . . 7
⊢ (𝜑 → ((ω
·o 𝐶) +no
((ω ·o ∩ 𝑆) +no 𝑀)) = (((ω ·o 𝐶) +no (ω
·o ∩ 𝑆)) +o 𝑀)) |
| 175 | 166, 169,
174 | 3eqtrd 2775 |
. . . . . 6
⊢ (𝜑 → (((ω
·o 𝐶) +no
𝑀) +no (ω
·o ∩ 𝑆)) = (((ω ·o 𝐶) +no (ω
·o ∩ 𝑆)) +o 𝑀)) |
| 176 | 164, 175 | eqtr2d 2772 |
. . . . 5
⊢ (𝜑 → (((ω
·o 𝐶) +no
(ω ·o ∩ 𝑆)) +o 𝑀) = (𝐴 +no (ω ·o ∩ 𝑆))) |
| 177 | 160, 176 | sseqtrd 4000 |
. . . 4
⊢ (𝜑 → ((ω
·o 𝐷)
+o 𝑀) ⊆
(𝐴 +no (ω
·o ∩ 𝑆))) |
| 178 | 134, 118 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝑀 ∈ On ∧ (ω
·o 𝐷)
∈ On)) |
| 179 | | oaordi 8563 |
. . . . . 6
⊢ ((𝑀 ∈ On ∧ (ω
·o 𝐷)
∈ On) → (𝑁 ∈
𝑀 → ((ω
·o 𝐷)
+o 𝑁) ∈
((ω ·o 𝐷) +o 𝑀))) |
| 180 | 178, 120,
179 | sylc 65 |
. . . . 5
⊢ (𝜑 → ((ω
·o 𝐷)
+o 𝑁) ∈
((ω ·o 𝐷) +o 𝑀)) |
| 181 | 150, 180 | eqeltrd 2835 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ((ω ·o 𝐷) +o 𝑀)) |
| 182 | 177, 181 | sseldd 3964 |
. . 3
⊢ (𝜑 → 𝐵 ∈ (𝐴 +no (ω ·o ∩ 𝑆))) |
| 183 | 115, 151,
182 | 3jca 1128 |
. 2
⊢ (𝜑 → ((𝐶 +o ∩
𝑆) = 𝐷 ∧ (𝐴 +o (ω ·o
∩ 𝑆)) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +no (ω ·o ∩ 𝑆)))) |
| 184 | | oveq2 7418 |
. . . . 5
⊢ (𝑥 = ∩
𝑆 → (𝐶 +o 𝑥) = (𝐶 +o ∩
𝑆)) |
| 185 | 184 | eqeq1d 2738 |
. . . 4
⊢ (𝑥 = ∩
𝑆 → ((𝐶 +o 𝑥) = 𝐷 ↔ (𝐶 +o ∩
𝑆) = 𝐷)) |
| 186 | | oveq2 7418 |
. . . . . 6
⊢ (𝑥 = ∩
𝑆 → (ω
·o 𝑥) =
(ω ·o ∩ 𝑆)) |
| 187 | 186 | oveq2d 7426 |
. . . . 5
⊢ (𝑥 = ∩
𝑆 → (𝐴 +o (ω ·o
𝑥)) = (𝐴 +o (ω ·o
∩ 𝑆))) |
| 188 | 187 | sseq1d 3995 |
. . . 4
⊢ (𝑥 = ∩
𝑆 → ((𝐴 +o (ω
·o 𝑥))
⊆ 𝐵 ↔ (𝐴 +o (ω
·o ∩ 𝑆)) ⊆ 𝐵)) |
| 189 | 186 | oveq2d 7426 |
. . . . 5
⊢ (𝑥 = ∩
𝑆 → (𝐴 +no (ω ·o 𝑥)) = (𝐴 +no (ω ·o ∩ 𝑆))) |
| 190 | 189 | eleq2d 2821 |
. . . 4
⊢ (𝑥 = ∩
𝑆 → (𝐵 ∈ (𝐴 +no (ω ·o 𝑥)) ↔ 𝐵 ∈ (𝐴 +no (ω ·o ∩ 𝑆)))) |
| 191 | 185, 188,
190 | 3anbi123d 1438 |
. . 3
⊢ (𝑥 = ∩
𝑆 → (((𝐶 +o 𝑥) = 𝐷 ∧ (𝐴 +o (ω ·o
𝑥)) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +no (ω ·o 𝑥))) ↔ ((𝐶 +o ∩
𝑆) = 𝐷 ∧ (𝐴 +o (ω ·o
∩ 𝑆)) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +no (ω ·o ∩ 𝑆))))) |
| 192 | 191 | rspcev 3606 |
. 2
⊢ ((∩ 𝑆
∈ (On ∖ 1o) ∧ ((𝐶 +o ∩
𝑆) = 𝐷 ∧ (𝐴 +o (ω ·o
∩ 𝑆)) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +no (ω ·o ∩ 𝑆)))) → ∃𝑥 ∈ (On ∖ 1o)((𝐶 +o 𝑥) = 𝐷 ∧ (𝐴 +o (ω ·o
𝑥)) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +no (ω ·o 𝑥)))) |
| 193 | 42, 183, 192 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑥 ∈ (On ∖ 1o)((𝐶 +o 𝑥) = 𝐷 ∧ (𝐴 +o (ω ·o
𝑥)) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +no (ω ·o 𝑥)))) |