Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfneg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfneg.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfneg | ⊢ Ⅎ𝑥-𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfneg.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | 2 | nfnegd 11146 | . 2 ⊢ (⊤ → Ⅎ𝑥-𝐴) |
4 | 3 | mptru 1546 | 1 ⊢ Ⅎ𝑥-𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnfc 2886 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-neg 11138 |
This theorem is referenced by: riotaneg 11884 zriotaneg 12364 infcvgaux1i 15497 mbfposb 24722 dvfsum2 25103 infnsuprnmpt 42685 neglimc 43078 stoweidlem23 43454 stoweidlem47 43478 |
Copyright terms: Public domain | W3C validator |