![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfneg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfneg.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfneg | ⊢ Ⅎ𝑥-𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfneg.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | 2 | nfnegd 11533 | . 2 ⊢ (⊤ → Ⅎ𝑥-𝐴) |
4 | 3 | mptru 1544 | 1 ⊢ Ⅎ𝑥-𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 Ⅎwnfc 2893 -cneg 11523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6527 df-fv 6583 df-ov 7453 df-neg 11525 |
This theorem is referenced by: riotaneg 12276 zriotaneg 12758 infcvgaux1i 15907 mbfposb 25709 dvfsum2 26097 infnsuprnmpt 45161 neglimc 45570 stoweidlem23 45946 stoweidlem47 45970 |
Copyright terms: Public domain | W3C validator |