MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfneg Structured version   Visualization version   GIF version

Theorem nfneg 11215
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfneg.1 𝑥𝐴
Assertion
Ref Expression
nfneg 𝑥-𝐴

Proof of Theorem nfneg
StepHypRef Expression
1 nfneg.1 . . . 4 𝑥𝐴
21a1i 11 . . 3 (⊤ → 𝑥𝐴)
32nfnegd 11214 . 2 (⊤ → 𝑥-𝐴)
43mptru 1546 1 𝑥-𝐴
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnfc 2887  -cneg 11204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5077  df-iota 6393  df-fv 6443  df-ov 7280  df-neg 11206
This theorem is referenced by:  riotaneg  11952  zriotaneg  12433  infcvgaux1i  15567  mbfposb  24815  dvfsum2  25196  infnsuprnmpt  42766  neglimc  43158  stoweidlem23  43534  stoweidlem47  43558
  Copyright terms: Public domain W3C validator