![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfneg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfneg.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfneg | ⊢ Ⅎ𝑥-𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfneg.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | 2 | nfnegd 11487 | . 2 ⊢ (⊤ → Ⅎ𝑥-𝐴) |
4 | 3 | mptru 1540 | 1 ⊢ Ⅎ𝑥-𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1534 Ⅎwnfc 2875 -cneg 11477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 df-neg 11479 |
This theorem is referenced by: riotaneg 12226 zriotaneg 12708 infcvgaux1i 15839 mbfposb 25626 dvfsum2 26013 infnsuprnmpt 44761 neglimc 45170 stoweidlem23 45546 stoweidlem47 45570 |
Copyright terms: Public domain | W3C validator |