| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfneg | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfneg.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfneg | ⊢ Ⅎ𝑥-𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfneg.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | 2 | nfnegd 11484 | . 2 ⊢ (⊤ → Ⅎ𝑥-𝐴) |
| 4 | 3 | mptru 1546 | 1 ⊢ Ⅎ𝑥-𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1540 Ⅎwnfc 2882 -cneg 11474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6493 df-fv 6548 df-ov 7415 df-neg 11476 |
| This theorem is referenced by: riotaneg 12228 zriotaneg 12713 infcvgaux1i 15874 mbfposb 25623 dvfsum2 26010 infnsuprnmpt 45190 neglimc 45595 stoweidlem23 45971 stoweidlem47 45995 |
| Copyright terms: Public domain | W3C validator |