MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfneg Structured version   Visualization version   GIF version

Theorem nfneg 11435
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfneg.1 𝑥𝐴
Assertion
Ref Expression
nfneg 𝑥-𝐴

Proof of Theorem nfneg
StepHypRef Expression
1 nfneg.1 . . . 4 𝑥𝐴
21a1i 11 . . 3 (⊤ → 𝑥𝐴)
32nfnegd 11434 . 2 (⊤ → 𝑥-𝐴)
43mptru 1547 1 𝑥-𝐴
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wnfc 2878  -cneg 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-ov 7397  df-neg 11426
This theorem is referenced by:  riotaneg  12178  zriotaneg  12663  infcvgaux1i  15830  mbfposb  25561  dvfsum2  25948  infnsuprnmpt  45216  neglimc  45618  stoweidlem23  45994  stoweidlem47  46018
  Copyright terms: Public domain W3C validator