MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfneg Structured version   Visualization version   GIF version

Theorem nfneg 11359
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfneg.1 𝑥𝐴
Assertion
Ref Expression
nfneg 𝑥-𝐴

Proof of Theorem nfneg
StepHypRef Expression
1 nfneg.1 . . . 4 𝑥𝐴
21a1i 11 . . 3 (⊤ → 𝑥𝐴)
32nfnegd 11358 . 2 (⊤ → 𝑥-𝐴)
43mptru 1547 1 𝑥-𝐴
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wnfc 2876  -cneg 11348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-neg 11350
This theorem is referenced by:  riotaneg  12104  zriotaneg  12589  infcvgaux1i  15764  mbfposb  25552  dvfsum2  25939  infnsuprnmpt  45248  neglimc  45648  stoweidlem23  46024  stoweidlem47  46048
  Copyright terms: Public domain W3C validator