Proof of Theorem nosepdmlem
Step | Hyp | Ref
| Expression |
1 | | sltval2 33786 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 ↔ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}))) |
2 | | fvex 6769 |
. . . . . . 7
⊢ (𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ∈ V |
3 | | fvex 6769 |
. . . . . . 7
⊢ (𝐵‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ∈ V |
4 | 2, 3 | brtp 33623 |
. . . . . 6
⊢ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ↔ (((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o))) |
5 | | df-3or 1086 |
. . . . . . . . . 10
⊢ ((((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) ↔ ((((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) ∨ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o))) |
6 | | ndmfv 6786 |
. . . . . . . . . . . . 13
⊢ (¬
∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
7 | | 1oex 8280 |
. . . . . . . . . . . . . . . . . . 19
⊢
1o ∈ V |
8 | 7 | prid1 4695 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ∈ {1o, 2o} |
9 | 8 | nosgnn0i 33789 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
≠ 1o |
10 | | neeq1 3005 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ → ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ 1o ↔ ∅ ≠
1o)) |
11 | 9, 10 | mpbiri 257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ 1o) |
12 | 11 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ → ¬ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o) |
13 | 12 | intnanrd 489 |
. . . . . . . . . . . . . 14
⊢ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ → ¬ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅)) |
14 | 12 | intnanrd 489 |
. . . . . . . . . . . . . 14
⊢ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ → ¬ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) |
15 | | ioran 980 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) ↔ (¬ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∧ ¬ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o))) |
16 | 13, 14, 15 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ → ¬ (((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o))) |
17 | 6, 16 | syl 17 |
. . . . . . . . . . . 12
⊢ (¬
∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 → ¬ (((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o))) |
18 | 17 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴) → ¬ (((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o))) |
19 | | orel1 885 |
. . . . . . . . . . 11
⊢ (¬
(((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) → (((((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) ∨ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) → ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o))) |
20 | 18, 19 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴) → (((((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) ∨ ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) → ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o))) |
21 | 5, 20 | syl5bi 241 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴) → ((((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) → ((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o))) |
22 | | ndmfv 6786 |
. . . . . . . . . . . . 13
⊢ (¬
∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵 → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
23 | | 2on 8275 |
. . . . . . . . . . . . . . . . 17
⊢
2o ∈ On |
24 | 23 | elexi 3441 |
. . . . . . . . . . . . . . . 16
⊢
2o ∈ V |
25 | 24 | prid2 4696 |
. . . . . . . . . . . . . . 15
⊢
2o ∈ {1o, 2o} |
26 | 25 | nosgnn0i 33789 |
. . . . . . . . . . . . . 14
⊢ ∅
≠ 2o |
27 | | neeq1 3005 |
. . . . . . . . . . . . . 14
⊢ ((𝐵‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ → ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ 2o ↔ ∅ ≠
2o)) |
28 | 26, 27 | mpbiri 257 |
. . . . . . . . . . . . 13
⊢ ((𝐵‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ 2o) |
29 | 22, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ (¬
∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵 → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ 2o) |
30 | 29 | neneqd 2947 |
. . . . . . . . . . 11
⊢ (¬
∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵 → ¬ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o) |
31 | 30 | con4i 114 |
. . . . . . . . . 10
⊢ ((𝐵‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o → ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵) |
32 | 31 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o) → ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵) |
33 | 21, 32 | syl6 35 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴) → ((((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) → ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
34 | 33 | ex 412 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 → ((((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) → ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵))) |
35 | 34 | com23 86 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ((((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o) ∨ ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅ ∧ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 2o)) → (¬ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵))) |
36 | 4, 35 | syl5bi 241 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ((𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (¬ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵))) |
37 | 1, 36 | sylbid 239 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 → (¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵))) |
38 | 37 | 3impia 1115 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 <s 𝐵) → (¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
39 | 38 | orrd 859 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 <s 𝐵) → (∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 ∨ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
40 | | elun 4079 |
. 2
⊢ (∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵) ↔ (∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 ∨ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
41 | 39, 40 | sylibr 233 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |