MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosepdmlem Structured version   Visualization version   GIF version

Theorem nosepdmlem 27743
Description: Lemma for nosepdm 27744. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
nosepdmlem ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepdmlem
StepHypRef Expression
1 sltval2 27716 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
2 fvex 6920 . . . . . . 7 (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ∈ V
3 fvex 6920 . . . . . . 7 (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ∈ V
42, 3brtp 5533 . . . . . 6 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
5 df-3or 1087 . . . . . . . . . 10 ((((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) ↔ ((((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
6 ndmfv 6942 . . . . . . . . . . . . 13 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
7 1oex 8515 . . . . . . . . . . . . . . . . . . 19 1o ∈ V
87prid1 4767 . . . . . . . . . . . . . . . . . 18 1o ∈ {1o, 2o}
98nosgnn0i 27719 . . . . . . . . . . . . . . . . 17 ∅ ≠ 1o
10 neeq1 3001 . . . . . . . . . . . . . . . . 17 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ → ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ 1o ↔ ∅ ≠ 1o))
119, 10mpbiri 258 . . . . . . . . . . . . . . . 16 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ 1o)
1211neneqd 2943 . . . . . . . . . . . . . . 15 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ → ¬ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o)
1312intnanrd 489 . . . . . . . . . . . . . 14 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ → ¬ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅))
1412intnanrd 489 . . . . . . . . . . . . . 14 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ → ¬ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o))
15 ioran 985 . . . . . . . . . . . . . 14 (¬ (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) ↔ (¬ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∧ ¬ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
1613, 14, 15sylanbrc 583 . . . . . . . . . . . . 13 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ → ¬ (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
176, 16syl 17 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 → ¬ (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
1817adantl 481 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴) → ¬ (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
19 orel1 888 . . . . . . . . . . 11 (¬ (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) → (((((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) → ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
2018, 19syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴) → (((((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) → ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
215, 20biimtrid 242 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴) → ((((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) → ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
22 ndmfv 6942 . . . . . . . . . . . . 13 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
23 2on 8519 . . . . . . . . . . . . . . . . 17 2o ∈ On
2423elexi 3501 . . . . . . . . . . . . . . . 16 2o ∈ V
2524prid2 4768 . . . . . . . . . . . . . . 15 2o ∈ {1o, 2o}
2625nosgnn0i 27719 . . . . . . . . . . . . . 14 ∅ ≠ 2o
27 neeq1 3001 . . . . . . . . . . . . . 14 ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ → ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ 2o ↔ ∅ ≠ 2o))
2826, 27mpbiri 258 . . . . . . . . . . . . 13 ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ 2o)
2922, 28syl 17 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ 2o)
3029neneqd 2943 . . . . . . . . . . 11 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → ¬ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)
3130con4i 114 . . . . . . . . . 10 ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)
3231adantl 481 . . . . . . . . 9 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)
3321, 32syl6 35 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴) → ((((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3433ex 412 . . . . . . 7 ((𝐴 No 𝐵 No ) → (¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 → ((((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)))
3534com23 86 . . . . . 6 ((𝐴 No 𝐵 No ) → ((((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) → (¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)))
364, 35biimtrid 242 . . . . 5 ((𝐴 No 𝐵 No ) → ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)))
371, 36sylbid 240 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 → (¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)))
38373impia 1116 . . 3 ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → (¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3938orrd 863 . 2 ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
40 elun 4163 . 2 ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵) ↔ ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
4139, 40sylibr 234 1 ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {crab 3433  cun 3961  c0 4339  {ctp 4635  cop 4637   cint 4951   class class class wbr 5148  dom cdm 5689  Oncon0 6386  cfv 6563  1oc1o 8498  2oc2o 8499   No csur 27699   <s cslt 27700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-dm 5699  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fv 6571  df-1o 8505  df-2o 8506  df-slt 27703
This theorem is referenced by:  nosepdm  27744
  Copyright terms: Public domain W3C validator