MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sranlm Structured version   Visualization version   GIF version

Theorem sranlm 24048
Description: The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
sranlm.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sranlm ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod)

Proof of Theorem sranlm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgngp 24026 . . . . 5 (𝑊 ∈ NrmRing → 𝑊 ∈ NrmGrp)
21adantr 481 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ NrmGrp)
3 eqidd 2737 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
4 sranlm.a . . . . . . 7 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
54a1i 11 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
6 eqid 2736 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
76subrgss 20223 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
87adantl 482 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
95, 8srabase 20640 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴))
105, 8sraaddg 20642 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (+g𝑊) = (+g𝐴))
1110oveqdr 7385 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
125, 8srads 20654 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (dist‘𝑊) = (dist‘𝐴))
1312reseq1d 5936 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝐴) ↾ ((Base‘𝑊) × (Base‘𝑊))))
145, 8sratopn 20653 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (TopOpen‘𝑊) = (TopOpen‘𝐴))
153, 9, 11, 13, 14ngppropd 23993 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ NrmGrp ↔ 𝐴 ∈ NrmGrp))
162, 15mpbid 231 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmGrp)
174sralmod 20656 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
1817adantl 482 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ LMod)
195, 8srasca 20646 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) = (Scalar‘𝐴))
20 eqid 2736 . . . . 5 (𝑊s 𝑆) = (𝑊s 𝑆)
2120subrgnrg 24037 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) ∈ NrmRing)
2219, 21eqeltrrd 2839 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Scalar‘𝐴) ∈ NrmRing)
2316, 18, 223jca 1128 . 2 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ NrmRing))
24 eqid 2736 . . . . . . . 8 (norm‘𝑊) = (norm‘𝑊)
25 eqid 2736 . . . . . . . 8 (AbsVal‘𝑊) = (AbsVal‘𝑊)
2624, 25nrgabv 24025 . . . . . . 7 (𝑊 ∈ NrmRing → (norm‘𝑊) ∈ (AbsVal‘𝑊))
2726ad2antrr 724 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (norm‘𝑊) ∈ (AbsVal‘𝑊))
288adantr 481 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑆 ⊆ (Base‘𝑊))
29 simprl 769 . . . . . . . 8 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
3020subrgbas 20231 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
3130adantl 482 . . . . . . . . . 10 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(𝑊s 𝑆)))
3219fveq2d 6846 . . . . . . . . . 10 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘(𝑊s 𝑆)) = (Base‘(Scalar‘𝐴)))
3331, 32eqtrd 2776 . . . . . . . . 9 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(Scalar‘𝐴)))
3433adantr 481 . . . . . . . 8 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑆 = (Base‘(Scalar‘𝐴)))
3529, 34eleqtrrd 2841 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥𝑆)
3628, 35sseldd 3945 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝑊))
37 simprr 771 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
389adantr 481 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝑊) = (Base‘𝐴))
3937, 38eleqtrrd 2841 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝑊))
40 eqid 2736 . . . . . . 7 (.r𝑊) = (.r𝑊)
4125, 6, 40abvmul 20288 . . . . . 6 (((norm‘𝑊) ∈ (AbsVal‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((norm‘𝑊)‘(𝑥(.r𝑊)𝑦)) = (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)))
4227, 36, 39, 41syl3anc 1371 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘(𝑥(.r𝑊)𝑦)) = (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)))
439, 10, 12nmpropd 23950 . . . . . . 7 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (norm‘𝑊) = (norm‘𝐴))
4443adantr 481 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (norm‘𝑊) = (norm‘𝐴))
455, 8sravsca 20648 . . . . . . 7 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
4645oveqdr 7385 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(.r𝑊)𝑦) = (𝑥( ·𝑠𝐴)𝑦))
4744, 46fveq12d 6849 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘(𝑥(.r𝑊)𝑦)) = ((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)))
4842, 47eqtr3d 2778 . . . 4 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)) = ((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)))
49 subrgsubg 20228 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ∈ (SubGrp‘𝑊))
5049ad2antlr 725 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑆 ∈ (SubGrp‘𝑊))
51 eqid 2736 . . . . . . . 8 (norm‘(𝑊s 𝑆)) = (norm‘(𝑊s 𝑆))
5220, 24, 51subgnm2 23990 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝑊) ∧ 𝑥𝑆) → ((norm‘(𝑊s 𝑆))‘𝑥) = ((norm‘𝑊)‘𝑥))
5350, 35, 52syl2anc 584 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘(𝑊s 𝑆))‘𝑥) = ((norm‘𝑊)‘𝑥))
5419adantr 481 . . . . . . . 8 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑊s 𝑆) = (Scalar‘𝐴))
5554fveq2d 6846 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (norm‘(𝑊s 𝑆)) = (norm‘(Scalar‘𝐴)))
5655fveq1d 6844 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘(𝑊s 𝑆))‘𝑥) = ((norm‘(Scalar‘𝐴))‘𝑥))
5753, 56eqtr3d 2778 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘𝑥) = ((norm‘(Scalar‘𝐴))‘𝑥))
5844fveq1d 6844 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘𝑦) = ((norm‘𝐴)‘𝑦))
5957, 58oveq12d 7375 . . . 4 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦)))
6048, 59eqtr3d 2778 . . 3 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦)))
6160ralrimivva 3197 . 2 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦 ∈ (Base‘𝐴)((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦)))
62 eqid 2736 . . 3 (Base‘𝐴) = (Base‘𝐴)
63 eqid 2736 . . 3 (norm‘𝐴) = (norm‘𝐴)
64 eqid 2736 . . 3 ( ·𝑠𝐴) = ( ·𝑠𝐴)
65 eqid 2736 . . 3 (Scalar‘𝐴) = (Scalar‘𝐴)
66 eqid 2736 . . 3 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
67 eqid 2736 . . 3 (norm‘(Scalar‘𝐴)) = (norm‘(Scalar‘𝐴))
6862, 63, 64, 65, 66, 67isnlm 24039 . 2 (𝐴 ∈ NrmMod ↔ ((𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦 ∈ (Base‘𝐴)((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦))))
6923, 61, 68sylanbrc 583 1 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wss 3910   × cxp 5631  cfv 6496  (class class class)co 7357   · cmul 11056  Basecbs 17083  s cress 17112  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  distcds 17142  SubGrpcsubg 18922  SubRingcsubrg 20218  AbsValcabv 20275  LModclmod 20322  subringAlg csra 20629  normcnm 23932  NrmGrpcngp 23933  NrmRingcnrg 23935  NrmModcnlm 23936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ds 17155  df-rest 17304  df-topn 17305  df-0g 17323  df-topgen 17325  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-abv 20276  df-lmod 20324  df-sra 20633  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-nrg 23941  df-nlm 23942
This theorem is referenced by:  rlmnlm  24052  srabn  24724
  Copyright terms: Public domain W3C validator