MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sranlm Structured version   Visualization version   GIF version

Theorem sranlm 24605
Description: The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
sranlm.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sranlm ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod)

Proof of Theorem sranlm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgngp 24583 . . . . 5 (𝑊 ∈ NrmRing → 𝑊 ∈ NrmGrp)
21adantr 480 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ NrmGrp)
3 eqidd 2730 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
4 sranlm.a . . . . . . 7 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
54a1i 11 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
6 eqid 2729 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
76subrgss 20492 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
87adantl 481 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
95, 8srabase 21116 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴))
105, 8sraaddg 21117 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (+g𝑊) = (+g𝐴))
1110oveqdr 7397 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
125, 8srads 21124 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (dist‘𝑊) = (dist‘𝐴))
1312reseq1d 5938 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝐴) ↾ ((Base‘𝑊) × (Base‘𝑊))))
145, 8sratopn 21123 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (TopOpen‘𝑊) = (TopOpen‘𝐴))
153, 9, 11, 13, 14ngppropd 24558 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ NrmGrp ↔ 𝐴 ∈ NrmGrp))
162, 15mpbid 232 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmGrp)
174sralmod 21126 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
1817adantl 481 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ LMod)
195, 8srasca 21119 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) = (Scalar‘𝐴))
20 eqid 2729 . . . . 5 (𝑊s 𝑆) = (𝑊s 𝑆)
2120subrgnrg 24594 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) ∈ NrmRing)
2219, 21eqeltrrd 2829 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Scalar‘𝐴) ∈ NrmRing)
2316, 18, 223jca 1128 . 2 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ NrmRing))
24 eqid 2729 . . . . . . . 8 (norm‘𝑊) = (norm‘𝑊)
25 eqid 2729 . . . . . . . 8 (AbsVal‘𝑊) = (AbsVal‘𝑊)
2624, 25nrgabv 24582 . . . . . . 7 (𝑊 ∈ NrmRing → (norm‘𝑊) ∈ (AbsVal‘𝑊))
2726ad2antrr 726 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (norm‘𝑊) ∈ (AbsVal‘𝑊))
288adantr 480 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑆 ⊆ (Base‘𝑊))
29 simprl 770 . . . . . . . 8 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
3020subrgbas 20501 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
3130adantl 481 . . . . . . . . . 10 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(𝑊s 𝑆)))
3219fveq2d 6844 . . . . . . . . . 10 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘(𝑊s 𝑆)) = (Base‘(Scalar‘𝐴)))
3331, 32eqtrd 2764 . . . . . . . . 9 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(Scalar‘𝐴)))
3433adantr 480 . . . . . . . 8 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑆 = (Base‘(Scalar‘𝐴)))
3529, 34eleqtrrd 2831 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥𝑆)
3628, 35sseldd 3944 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝑊))
37 simprr 772 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
389adantr 480 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝑊) = (Base‘𝐴))
3937, 38eleqtrrd 2831 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝑊))
40 eqid 2729 . . . . . . 7 (.r𝑊) = (.r𝑊)
4125, 6, 40abvmul 20741 . . . . . 6 (((norm‘𝑊) ∈ (AbsVal‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((norm‘𝑊)‘(𝑥(.r𝑊)𝑦)) = (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)))
4227, 36, 39, 41syl3anc 1373 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘(𝑥(.r𝑊)𝑦)) = (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)))
439, 10, 12nmpropd 24515 . . . . . . 7 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (norm‘𝑊) = (norm‘𝐴))
4443adantr 480 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (norm‘𝑊) = (norm‘𝐴))
455, 8sravsca 21120 . . . . . . 7 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
4645oveqdr 7397 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(.r𝑊)𝑦) = (𝑥( ·𝑠𝐴)𝑦))
4744, 46fveq12d 6847 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘(𝑥(.r𝑊)𝑦)) = ((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)))
4842, 47eqtr3d 2766 . . . 4 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)) = ((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)))
49 subrgsubg 20497 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ∈ (SubGrp‘𝑊))
5049ad2antlr 727 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑆 ∈ (SubGrp‘𝑊))
51 eqid 2729 . . . . . . . 8 (norm‘(𝑊s 𝑆)) = (norm‘(𝑊s 𝑆))
5220, 24, 51subgnm2 24555 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝑊) ∧ 𝑥𝑆) → ((norm‘(𝑊s 𝑆))‘𝑥) = ((norm‘𝑊)‘𝑥))
5350, 35, 52syl2anc 584 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘(𝑊s 𝑆))‘𝑥) = ((norm‘𝑊)‘𝑥))
5419adantr 480 . . . . . . . 8 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑊s 𝑆) = (Scalar‘𝐴))
5554fveq2d 6844 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (norm‘(𝑊s 𝑆)) = (norm‘(Scalar‘𝐴)))
5655fveq1d 6842 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘(𝑊s 𝑆))‘𝑥) = ((norm‘(Scalar‘𝐴))‘𝑥))
5753, 56eqtr3d 2766 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘𝑥) = ((norm‘(Scalar‘𝐴))‘𝑥))
5844fveq1d 6842 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘𝑦) = ((norm‘𝐴)‘𝑦))
5957, 58oveq12d 7387 . . . 4 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦)))
6048, 59eqtr3d 2766 . . 3 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦)))
6160ralrimivva 3178 . 2 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦 ∈ (Base‘𝐴)((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦)))
62 eqid 2729 . . 3 (Base‘𝐴) = (Base‘𝐴)
63 eqid 2729 . . 3 (norm‘𝐴) = (norm‘𝐴)
64 eqid 2729 . . 3 ( ·𝑠𝐴) = ( ·𝑠𝐴)
65 eqid 2729 . . 3 (Scalar‘𝐴) = (Scalar‘𝐴)
66 eqid 2729 . . 3 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
67 eqid 2729 . . 3 (norm‘(Scalar‘𝐴)) = (norm‘(Scalar‘𝐴))
6862, 63, 64, 65, 66, 67isnlm 24596 . 2 (𝐴 ∈ NrmMod ↔ ((𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦 ∈ (Base‘𝐴)((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦))))
6923, 61, 68sylanbrc 583 1 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3911   × cxp 5629  cfv 6499  (class class class)co 7369   · cmul 11049  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  distcds 17205  SubGrpcsubg 19034  SubRingcsubrg 20489  AbsValcabv 20728  LModclmod 20798  subringAlg csra 21110  normcnm 24497  NrmGrpcngp 24498  NrmRingcnrg 24500  NrmModcnlm 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-topgen 17382  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrng 20466  df-subrg 20490  df-abv 20729  df-lmod 20800  df-sra 21112  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-xms 24241  df-ms 24242  df-nm 24503  df-ngp 24504  df-nrg 24506  df-nlm 24507
This theorem is referenced by:  rlmnlm  24609  srabn  25293
  Copyright terms: Public domain W3C validator