![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgdomn | Structured version Visualization version GIF version |
Description: A nonzero normed ring is a domain. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nrgdomn | ⊢ (𝑅 ∈ NrmRing → (𝑅 ∈ Domn ↔ 𝑅 ∈ NzRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnnzr 20722 | . 2 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
2 | simpr 484 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ NzRing) | |
3 | eqid 2734 | . . . . . . 7 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
4 | eqid 2734 | . . . . . . 7 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
5 | 3, 4 | nrgabv 24697 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅)) |
6 | 5 | ne0d 4347 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → (AbsVal‘𝑅) ≠ ∅) |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) → (AbsVal‘𝑅) ≠ ∅) |
8 | 4 | abvn0b 20853 | . . . 4 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (AbsVal‘𝑅) ≠ ∅)) |
9 | 2, 7, 8 | sylanbrc 583 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ Domn) |
10 | 9 | ex 412 | . 2 ⊢ (𝑅 ∈ NrmRing → (𝑅 ∈ NzRing → 𝑅 ∈ Domn)) |
11 | 1, 10 | impbid2 226 | 1 ⊢ (𝑅 ∈ NrmRing → (𝑅 ∈ Domn ↔ 𝑅 ∈ NzRing)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ≠ wne 2937 ∅c0 4338 ‘cfv 6562 NzRingcnzr 20528 Domncdomn 20708 AbsValcabv 20825 normcnm 24604 NrmRingcnrg 24607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-ico 13389 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-nzr 20529 df-domn 20711 df-abv 20826 df-nrg 24613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |