| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrgring | Structured version Visualization version GIF version | ||
| Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nrgring | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
| 2 | eqid 2734 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
| 3 | 1, 2 | nrgabv 24637 | . 2 ⊢ (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅)) |
| 4 | 2 | abvrcl 20787 | . 2 ⊢ ((norm‘𝑅) ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6542 Ringcrg 20203 AbsValcabv 20782 normcnm 24552 NrmRingcnrg 24555 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fv 6550 df-abv 20783 df-nrg 24561 |
| This theorem is referenced by: nrgdsdi 24641 nrgdsdir 24642 nmdvr 24646 nrgtgp 24648 rlmnlm 24664 nrgtrg 24666 nrginvrcnlem 24667 nrginvrcn 24668 nrgtdrg 24669 rlmbn 25350 iistmd 33842 zrhnm 33909 cnzh 33910 rezh 33911 |
| Copyright terms: Public domain | W3C validator |