| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrgring | Structured version Visualization version GIF version | ||
| Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nrgring | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
| 3 | 1, 2 | nrgabv 24576 | . 2 ⊢ (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅)) |
| 4 | 2 | abvrcl 20728 | . 2 ⊢ ((norm‘𝑅) ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 Ringcrg 20151 AbsValcabv 20723 normcnm 24491 NrmRingcnrg 24494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 df-abv 20724 df-nrg 24500 |
| This theorem is referenced by: nrgdsdi 24580 nrgdsdir 24581 nmdvr 24585 nrgtgp 24587 rlmnlm 24603 nrgtrg 24605 nrginvrcnlem 24606 nrginvrcn 24607 nrgtdrg 24608 rlmbn 25288 iistmd 33915 zrhnm 33980 cnzh 33981 rezh 33982 |
| Copyright terms: Public domain | W3C validator |