| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrgring | Structured version Visualization version GIF version | ||
| Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nrgring | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
| 3 | 1, 2 | nrgabv 24547 | . 2 ⊢ (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅)) |
| 4 | 2 | abvrcl 20698 | . 2 ⊢ ((norm‘𝑅) ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6482 Ringcrg 20118 AbsValcabv 20693 normcnm 24462 NrmRingcnrg 24465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 df-abv 20694 df-nrg 24471 |
| This theorem is referenced by: nrgdsdi 24551 nrgdsdir 24552 nmdvr 24556 nrgtgp 24558 rlmnlm 24574 nrgtrg 24576 nrginvrcnlem 24577 nrginvrcn 24578 nrgtdrg 24579 rlmbn 25259 iistmd 33869 zrhnm 33934 cnzh 33935 rezh 33936 |
| Copyright terms: Public domain | W3C validator |