MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgring Structured version   Visualization version   GIF version

Theorem nrgring 24700
Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nrgring (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)

Proof of Theorem nrgring
StepHypRef Expression
1 eqid 2735 . . 3 (norm‘𝑅) = (norm‘𝑅)
2 eqid 2735 . . 3 (AbsVal‘𝑅) = (AbsVal‘𝑅)
31, 2nrgabv 24698 . 2 (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅))
42abvrcl 20831 . 2 ((norm‘𝑅) ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring)
53, 4syl 17 1 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6563  Ringcrg 20251  AbsValcabv 20826  normcnm 24605  NrmRingcnrg 24608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fv 6571  df-abv 20827  df-nrg 24614
This theorem is referenced by:  nrgdsdi  24702  nrgdsdir  24703  nmdvr  24707  nrgtgp  24709  rlmnlm  24725  nrgtrg  24727  nrginvrcnlem  24728  nrginvrcn  24729  nrgtdrg  24730  rlmbn  25409  iistmd  33863  zrhnm  33930  cnzh  33931  rezh  33932
  Copyright terms: Public domain W3C validator