MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgring Structured version   Visualization version   GIF version

Theorem nrgring 24551
Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nrgring (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)

Proof of Theorem nrgring
StepHypRef Expression
1 eqid 2729 . . 3 (norm‘𝑅) = (norm‘𝑅)
2 eqid 2729 . . 3 (AbsVal‘𝑅) = (AbsVal‘𝑅)
31, 2nrgabv 24549 . 2 (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅))
42abvrcl 20722 . 2 ((norm‘𝑅) ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring)
53, 4syl 17 1 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6511  Ringcrg 20142  AbsValcabv 20717  normcnm 24464  NrmRingcnrg 24467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519  df-abv 20718  df-nrg 24473
This theorem is referenced by:  nrgdsdi  24553  nrgdsdir  24554  nmdvr  24558  nrgtgp  24560  rlmnlm  24576  nrgtrg  24578  nrginvrcnlem  24579  nrginvrcn  24580  nrgtdrg  24581  rlmbn  25261  iistmd  33892  zrhnm  33957  cnzh  33958  rezh  33959
  Copyright terms: Public domain W3C validator