MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgring Structured version   Visualization version   GIF version

Theorem nrgring 23827
Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nrgring (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)

Proof of Theorem nrgring
StepHypRef Expression
1 eqid 2738 . . 3 (norm‘𝑅) = (norm‘𝑅)
2 eqid 2738 . . 3 (AbsVal‘𝑅) = (AbsVal‘𝑅)
31, 2nrgabv 23825 . 2 (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅))
42abvrcl 20081 . 2 ((norm‘𝑅) ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring)
53, 4syl 17 1 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6433  Ringcrg 19783  AbsValcabv 20076  normcnm 23732  NrmRingcnrg 23735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fv 6441  df-abv 20077  df-nrg 23741
This theorem is referenced by:  nrgdsdi  23829  nrgdsdir  23830  nmdvr  23834  nrgtgp  23836  rlmnlm  23852  nrgtrg  23854  nrginvrcnlem  23855  nrginvrcn  23856  nrgtdrg  23857  rlmbn  24525  iistmd  31852  zrhnm  31919  cnzh  31920  rezh  31921
  Copyright terms: Public domain W3C validator