![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgring | Structured version Visualization version GIF version |
Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nrgring | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
2 | eqid 2735 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
3 | 1, 2 | nrgabv 24698 | . 2 ⊢ (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅)) |
4 | 2 | abvrcl 20831 | . 2 ⊢ ((norm‘𝑅) ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
5 | 3, 4 | syl 17 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6563 Ringcrg 20251 AbsValcabv 20826 normcnm 24605 NrmRingcnrg 24608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fv 6571 df-abv 20827 df-nrg 24614 |
This theorem is referenced by: nrgdsdi 24702 nrgdsdir 24703 nmdvr 24707 nrgtgp 24709 rlmnlm 24725 nrgtrg 24727 nrginvrcnlem 24728 nrginvrcn 24729 nrgtdrg 24730 rlmbn 25409 iistmd 33863 zrhnm 33930 cnzh 33931 rezh 33932 |
Copyright terms: Public domain | W3C validator |