MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgring Structured version   Visualization version   GIF version

Theorem nrgring 24621
Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nrgring (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)

Proof of Theorem nrgring
StepHypRef Expression
1 eqid 2734 . . 3 (norm‘𝑅) = (norm‘𝑅)
2 eqid 2734 . . 3 (AbsVal‘𝑅) = (AbsVal‘𝑅)
31, 2nrgabv 24619 . 2 (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅))
42abvrcl 20783 . 2 ((norm‘𝑅) ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring)
53, 4syl 17 1 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cfv 6541  Ringcrg 20199  AbsValcabv 20778  normcnm 24534  NrmRingcnrg 24537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fv 6549  df-abv 20779  df-nrg 24543
This theorem is referenced by:  nrgdsdi  24623  nrgdsdir  24624  nmdvr  24628  nrgtgp  24630  rlmnlm  24646  nrgtrg  24648  nrginvrcnlem  24649  nrginvrcn  24650  nrgtdrg  24651  rlmbn  25332  iistmd  33876  zrhnm  33943  cnzh  33944  rezh  33945
  Copyright terms: Public domain W3C validator