![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgring | Structured version Visualization version GIF version |
Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nrgring | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . 3 ⊢ (norm‘𝑅) = (norm‘𝑅) | |
2 | eqid 2799 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
3 | 1, 2 | nrgabv 22793 | . 2 ⊢ (𝑅 ∈ NrmRing → (norm‘𝑅) ∈ (AbsVal‘𝑅)) |
4 | 2 | abvrcl 19139 | . 2 ⊢ ((norm‘𝑅) ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
5 | 3, 4 | syl 17 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ‘cfv 6101 Ringcrg 18863 AbsValcabv 19134 normcnm 22709 NrmRingcnrg 22712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-xp 5318 df-rel 5319 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fv 6109 df-abv 19135 df-nrg 22718 |
This theorem is referenced by: nrgdsdi 22797 nrgdsdir 22798 nmdvr 22802 nrgtgp 22804 rlmnlm 22820 nrgtrg 22822 nrginvrcnlem 22823 nrginvrcn 22824 nrgtdrg 22825 rlmbn 23487 iistmd 30464 zrhnm 30529 cnzh 30530 rezh 30531 |
Copyright terms: Public domain | W3C validator |