MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgring Structured version   Visualization version   GIF version

Theorem nrgring 24171
Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nrgring (𝑅 ∈ NrmRing β†’ 𝑅 ∈ Ring)

Proof of Theorem nrgring
StepHypRef Expression
1 eqid 2732 . . 3 (normβ€˜π‘…) = (normβ€˜π‘…)
2 eqid 2732 . . 3 (AbsValβ€˜π‘…) = (AbsValβ€˜π‘…)
31, 2nrgabv 24169 . 2 (𝑅 ∈ NrmRing β†’ (normβ€˜π‘…) ∈ (AbsValβ€˜π‘…))
42abvrcl 20421 . 2 ((normβ€˜π‘…) ∈ (AbsValβ€˜π‘…) β†’ 𝑅 ∈ Ring)
53, 4syl 17 1 (𝑅 ∈ NrmRing β†’ 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  β€˜cfv 6540  Ringcrg 20049  AbsValcabv 20416  normcnm 24076  NrmRingcnrg 24079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fv 6548  df-abv 20417  df-nrg 24085
This theorem is referenced by:  nrgdsdi  24173  nrgdsdir  24174  nmdvr  24178  nrgtgp  24180  rlmnlm  24196  nrgtrg  24198  nrginvrcnlem  24199  nrginvrcn  24200  nrgtdrg  24201  rlmbn  24869  iistmd  32870  zrhnm  32937  cnzh  32938  rezh  32939
  Copyright terms: Public domain W3C validator