MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmmul Structured version   Visualization version   GIF version

Theorem nmmul 24172
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Baseβ€˜π‘…)
nmmul.n 𝑁 = (normβ€˜π‘…)
nmmul.t Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
nmmul ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴 Β· 𝐡)) = ((π‘β€˜π΄) Β· (π‘β€˜π΅)))

Proof of Theorem nmmul
StepHypRef Expression
1 nmmul.n . . 3 𝑁 = (normβ€˜π‘…)
2 eqid 2732 . . 3 (AbsValβ€˜π‘…) = (AbsValβ€˜π‘…)
31, 2nrgabv 24169 . 2 (𝑅 ∈ NrmRing β†’ 𝑁 ∈ (AbsValβ€˜π‘…))
4 nmmul.x . . 3 𝑋 = (Baseβ€˜π‘…)
5 nmmul.t . . 3 Β· = (.rβ€˜π‘…)
62, 4, 5abvmul 20429 . 2 ((𝑁 ∈ (AbsValβ€˜π‘…) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴 Β· 𝐡)) = ((π‘β€˜π΄) Β· (π‘β€˜π΅)))
73, 6syl3an1 1163 1 ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴 Β· 𝐡)) = ((π‘β€˜π΄) Β· (π‘β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  β€˜cfv 6540  (class class class)co 7405   Β· cmul 11111  Basecbs 17140  .rcmulr 17194  AbsValcabv 20416  normcnm 24076  NrmRingcnrg 24079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-abv 20417  df-nrg 24085
This theorem is referenced by:  nrgdsdi  24173  nrgdsdir  24174  nminvr  24177  nmdvr  24178  nrginvrcnlem  24199
  Copyright terms: Public domain W3C validator