Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmmul | Structured version Visualization version GIF version |
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
nmmul.n | ⊢ 𝑁 = (norm‘𝑅) |
nmmul.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
nmmul | ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmmul.n | . . 3 ⊢ 𝑁 = (norm‘𝑅) | |
2 | eqid 2739 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
3 | 1, 2 | nrgabv 23806 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ (AbsVal‘𝑅)) |
4 | nmmul.x | . . 3 ⊢ 𝑋 = (Base‘𝑅) | |
5 | nmmul.t | . . 3 ⊢ · = (.r‘𝑅) | |
6 | 2, 4, 5 | abvmul 20070 | . 2 ⊢ ((𝑁 ∈ (AbsVal‘𝑅) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) |
7 | 3, 6 | syl3an1 1161 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 · cmul 10860 Basecbs 16893 .rcmulr 16944 AbsValcabv 20057 normcnm 23713 NrmRingcnrg 23716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-abv 20058 df-nrg 23722 |
This theorem is referenced by: nrgdsdi 23810 nrgdsdir 23811 nminvr 23814 nmdvr 23815 nrginvrcnlem 23836 |
Copyright terms: Public domain | W3C validator |