![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmmul | Structured version Visualization version GIF version |
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nmmul.x | β’ π = (Baseβπ ) |
nmmul.n | β’ π = (normβπ ) |
nmmul.t | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
nmmul | β’ ((π β NrmRing β§ π΄ β π β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((πβπ΄) Β· (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmmul.n | . . 3 β’ π = (normβπ ) | |
2 | eqid 2732 | . . 3 β’ (AbsValβπ ) = (AbsValβπ ) | |
3 | 1, 2 | nrgabv 24169 | . 2 β’ (π β NrmRing β π β (AbsValβπ )) |
4 | nmmul.x | . . 3 β’ π = (Baseβπ ) | |
5 | nmmul.t | . . 3 β’ Β· = (.rβπ ) | |
6 | 2, 4, 5 | abvmul 20429 | . 2 β’ ((π β (AbsValβπ ) β§ π΄ β π β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((πβπ΄) Β· (πβπ΅))) |
7 | 3, 6 | syl3an1 1163 | 1 β’ ((π β NrmRing β§ π΄ β π β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((πβπ΄) Β· (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Β· cmul 11111 Basecbs 17140 .rcmulr 17194 AbsValcabv 20416 normcnm 24076 NrmRingcnrg 24079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-abv 20417 df-nrg 24085 |
This theorem is referenced by: nrgdsdi 24173 nrgdsdir 24174 nminvr 24177 nmdvr 24178 nrginvrcnlem 24199 |
Copyright terms: Public domain | W3C validator |