MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmmul Structured version   Visualization version   GIF version

Theorem nmmul 24505
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Baseβ€˜π‘…)
nmmul.n 𝑁 = (normβ€˜π‘…)
nmmul.t Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
nmmul ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴 Β· 𝐡)) = ((π‘β€˜π΄) Β· (π‘β€˜π΅)))

Proof of Theorem nmmul
StepHypRef Expression
1 nmmul.n . . 3 𝑁 = (normβ€˜π‘…)
2 eqid 2724 . . 3 (AbsValβ€˜π‘…) = (AbsValβ€˜π‘…)
31, 2nrgabv 24502 . 2 (𝑅 ∈ NrmRing β†’ 𝑁 ∈ (AbsValβ€˜π‘…))
4 nmmul.x . . 3 𝑋 = (Baseβ€˜π‘…)
5 nmmul.t . . 3 Β· = (.rβ€˜π‘…)
62, 4, 5abvmul 20664 . 2 ((𝑁 ∈ (AbsValβ€˜π‘…) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴 Β· 𝐡)) = ((π‘β€˜π΄) Β· (π‘β€˜π΅)))
73, 6syl3an1 1160 1 ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴 Β· 𝐡)) = ((π‘β€˜π΄) Β· (π‘β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  β€˜cfv 6534  (class class class)co 7402   Β· cmul 11112  Basecbs 17145  .rcmulr 17199  AbsValcabv 20651  normcnm 24409  NrmRingcnrg 24412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-map 8819  df-abv 20652  df-nrg 24418
This theorem is referenced by:  nrgdsdi  24506  nrgdsdir  24507  nminvr  24510  nmdvr  24511  nrginvrcnlem  24532
  Copyright terms: Public domain W3C validator