| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmmul | Structured version Visualization version GIF version | ||
| Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
| nmmul.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmmul.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| nmmul | ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmmul.n | . . 3 ⊢ 𝑁 = (norm‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
| 3 | 1, 2 | nrgabv 24556 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ (AbsVal‘𝑅)) |
| 4 | nmmul.x | . . 3 ⊢ 𝑋 = (Base‘𝑅) | |
| 5 | nmmul.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 6 | 2, 4, 5 | abvmul 20737 | . 2 ⊢ ((𝑁 ∈ (AbsVal‘𝑅) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| 7 | 3, 6 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 · cmul 11080 Basecbs 17186 .rcmulr 17228 AbsValcabv 20724 normcnm 24471 NrmRingcnrg 24474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-abv 20725 df-nrg 24480 |
| This theorem is referenced by: nrgdsdi 24560 nrgdsdir 24561 nminvr 24564 nmdvr 24565 nrginvrcnlem 24586 |
| Copyright terms: Public domain | W3C validator |