MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmmul Structured version   Visualization version   GIF version

Theorem nmmul 24603
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Base‘𝑅)
nmmul.n 𝑁 = (norm‘𝑅)
nmmul.t · = (.r𝑅)
Assertion
Ref Expression
nmmul ((𝑅 ∈ NrmRing ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem nmmul
StepHypRef Expression
1 nmmul.n . . 3 𝑁 = (norm‘𝑅)
2 eqid 2735 . . 3 (AbsVal‘𝑅) = (AbsVal‘𝑅)
31, 2nrgabv 24600 . 2 (𝑅 ∈ NrmRing → 𝑁 ∈ (AbsVal‘𝑅))
4 nmmul.x . . 3 𝑋 = (Base‘𝑅)
5 nmmul.t . . 3 · = (.r𝑅)
62, 4, 5abvmul 20781 . 2 ((𝑁 ∈ (AbsVal‘𝑅) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))
73, 6syl3an1 1163 1 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405   · cmul 11134  Basecbs 17228  .rcmulr 17272  AbsValcabv 20768  normcnm 24515  NrmRingcnrg 24518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-abv 20769  df-nrg 24524
This theorem is referenced by:  nrgdsdi  24604  nrgdsdir  24605  nminvr  24608  nmdvr  24609  nrginvrcnlem  24630
  Copyright terms: Public domain W3C validator