MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmmul Structured version   Visualization version   GIF version

Theorem nmmul 23200
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Base‘𝑅)
nmmul.n 𝑁 = (norm‘𝑅)
nmmul.t · = (.r𝑅)
Assertion
Ref Expression
nmmul ((𝑅 ∈ NrmRing ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem nmmul
StepHypRef Expression
1 nmmul.n . . 3 𝑁 = (norm‘𝑅)
2 eqid 2818 . . 3 (AbsVal‘𝑅) = (AbsVal‘𝑅)
31, 2nrgabv 23197 . 2 (𝑅 ∈ NrmRing → 𝑁 ∈ (AbsVal‘𝑅))
4 nmmul.x . . 3 𝑋 = (Base‘𝑅)
5 nmmul.t . . 3 · = (.r𝑅)
62, 4, 5abvmul 19529 . 2 ((𝑁 ∈ (AbsVal‘𝑅) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))
73, 6syl3an1 1155 1 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145   · cmul 10530  Basecbs 16471  .rcmulr 16554  AbsValcabv 19516  normcnm 23113  NrmRingcnrg 23116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8397  df-abv 19517  df-nrg 23122
This theorem is referenced by:  nrgdsdi  23201  nrgdsdir  23202  nminvr  23205  nmdvr  23206  nrginvrcnlem  23227
  Copyright terms: Public domain W3C validator