MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmmul Structured version   Visualization version   GIF version

Theorem nmmul 24559
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Base‘𝑅)
nmmul.n 𝑁 = (norm‘𝑅)
nmmul.t · = (.r𝑅)
Assertion
Ref Expression
nmmul ((𝑅 ∈ NrmRing ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem nmmul
StepHypRef Expression
1 nmmul.n . . 3 𝑁 = (norm‘𝑅)
2 eqid 2730 . . 3 (AbsVal‘𝑅) = (AbsVal‘𝑅)
31, 2nrgabv 24556 . 2 (𝑅 ∈ NrmRing → 𝑁 ∈ (AbsVal‘𝑅))
4 nmmul.x . . 3 𝑋 = (Base‘𝑅)
5 nmmul.t . . 3 · = (.r𝑅)
62, 4, 5abvmul 20737 . 2 ((𝑁 ∈ (AbsVal‘𝑅) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))
73, 6syl3an1 1163 1 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390   · cmul 11080  Basecbs 17186  .rcmulr 17228  AbsValcabv 20724  normcnm 24471  NrmRingcnrg 24474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-abv 20725  df-nrg 24480
This theorem is referenced by:  nrgdsdi  24560  nrgdsdir  24561  nminvr  24564  nmdvr  24565  nrginvrcnlem  24586
  Copyright terms: Public domain W3C validator