| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmmul | Structured version Visualization version GIF version | ||
| Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
| nmmul.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmmul.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| nmmul | ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmmul.n | . . 3 ⊢ 𝑁 = (norm‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (AbsVal‘𝑅) = (AbsVal‘𝑅) | |
| 3 | 1, 2 | nrgabv 24565 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑁 ∈ (AbsVal‘𝑅)) |
| 4 | nmmul.x | . . 3 ⊢ 𝑋 = (Base‘𝑅) | |
| 5 | nmmul.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 6 | 2, 4, 5 | abvmul 20724 | . 2 ⊢ ((𝑁 ∈ (AbsVal‘𝑅) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| 7 | 3, 6 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 · 𝐵)) = ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 · cmul 11033 Basecbs 17138 .rcmulr 17180 AbsValcabv 20711 normcnm 24480 NrmRingcnrg 24483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-abv 20712 df-nrg 24489 |
| This theorem is referenced by: nrgdsdi 24569 nrgdsdir 24570 nminvr 24573 nmdvr 24574 nrginvrcnlem 24595 |
| Copyright terms: Public domain | W3C validator |