![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmmul | Structured version Visualization version GIF version |
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nmmul.x | β’ π = (Baseβπ ) |
nmmul.n | β’ π = (normβπ ) |
nmmul.t | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
nmmul | β’ ((π β NrmRing β§ π΄ β π β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((πβπ΄) Β· (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmmul.n | . . 3 β’ π = (normβπ ) | |
2 | eqid 2724 | . . 3 β’ (AbsValβπ ) = (AbsValβπ ) | |
3 | 1, 2 | nrgabv 24502 | . 2 β’ (π β NrmRing β π β (AbsValβπ )) |
4 | nmmul.x | . . 3 β’ π = (Baseβπ ) | |
5 | nmmul.t | . . 3 β’ Β· = (.rβπ ) | |
6 | 2, 4, 5 | abvmul 20664 | . 2 β’ ((π β (AbsValβπ ) β§ π΄ β π β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((πβπ΄) Β· (πβπ΅))) |
7 | 3, 6 | syl3an1 1160 | 1 β’ ((π β NrmRing β§ π΄ β π β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((πβπ΄) Β· (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6534 (class class class)co 7402 Β· cmul 11112 Basecbs 17145 .rcmulr 17199 AbsValcabv 20651 normcnm 24409 NrmRingcnrg 24412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-map 8819 df-abv 20652 df-nrg 24418 |
This theorem is referenced by: nrgdsdi 24506 nrgdsdir 24507 nminvr 24510 nmdvr 24511 nrginvrcnlem 24532 |
Copyright terms: Public domain | W3C validator |