Step | Hyp | Ref
| Expression |
1 | | o2timesd.x |
. . . 4
β’ (π β π β π΅) |
2 | | o2timesd.i |
. . . 4
β’ (π β βπ₯ β π΅ ( 1 Β· π₯) = π₯) |
3 | | oveq2 7416 |
. . . . . . 7
β’ (π₯ = π β ( 1 Β· π₯) = ( 1 Β· π)) |
4 | | id 22 |
. . . . . . 7
β’ (π₯ = π β π₯ = π) |
5 | 3, 4 | eqeq12d 2748 |
. . . . . 6
β’ (π₯ = π β (( 1 Β· π₯) = π₯ β ( 1 Β· π) = π)) |
6 | 5 | rspcva 3610 |
. . . . 5
β’ ((π β π΅ β§ βπ₯ β π΅ ( 1 Β· π₯) = π₯) β ( 1 Β· π) = π) |
7 | 6 | eqcomd 2738 |
. . . 4
β’ ((π β π΅ β§ βπ₯ β π΅ ( 1 Β· π₯) = π₯) β π = ( 1 Β· π)) |
8 | 1, 2, 7 | syl2anc 584 |
. . 3
β’ (π β π = ( 1 Β· π)) |
9 | 8, 8 | oveq12d 7426 |
. 2
β’ (π β (π + π) = (( 1 Β· π) + ( 1 Β· π))) |
10 | | o2timesd.u |
. . . 4
β’ (π β 1 β π΅) |
11 | 10, 10, 1 | 3jca 1128 |
. . 3
β’ (π β ( 1 β π΅ β§ 1 β π΅ β§ π β π΅)) |
12 | | o2timesd.e |
. . 3
β’ (π β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) |
13 | | oveq1 7415 |
. . . . . 6
β’ (π₯ = 1 β (π₯ + π¦) = ( 1 + π¦)) |
14 | 13 | oveq1d 7423 |
. . . . 5
β’ (π₯ = 1 β ((π₯ + π¦) Β· π§) = (( 1 + π¦) Β· π§)) |
15 | | oveq1 7415 |
. . . . . 6
β’ (π₯ = 1 β (π₯ Β· π§) = ( 1 Β· π§)) |
16 | 15 | oveq1d 7423 |
. . . . 5
β’ (π₯ = 1 β ((π₯ Β· π§) + (π¦ Β· π§)) = (( 1 Β· π§) + (π¦ Β· π§))) |
17 | 14, 16 | eqeq12d 2748 |
. . . 4
β’ (π₯ = 1 β (((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§)) β (( 1 + π¦) Β· π§) = (( 1 Β· π§) + (π¦ Β· π§)))) |
18 | | oveq2 7416 |
. . . . . 6
β’ (π¦ = 1 β ( 1 + π¦) = ( 1 + 1 )) |
19 | 18 | oveq1d 7423 |
. . . . 5
β’ (π¦ = 1 β (( 1 + π¦) Β· π§) = (( 1 + 1 ) Β· π§)) |
20 | | oveq1 7415 |
. . . . . 6
β’ (π¦ = 1 β (π¦ Β· π§) = ( 1 Β· π§)) |
21 | 20 | oveq2d 7424 |
. . . . 5
β’ (π¦ = 1 β (( 1 Β· π§) + (π¦ Β· π§)) = (( 1 Β· π§) + ( 1 Β· π§))) |
22 | 19, 21 | eqeq12d 2748 |
. . . 4
β’ (π¦ = 1 β ((( 1 + π¦) Β· π§) = (( 1 Β· π§) + (π¦ Β· π§)) β (( 1 + 1 ) Β· π§) = (( 1 Β· π§) + ( 1 Β· π§)))) |
23 | | oveq2 7416 |
. . . . 5
β’ (π§ = π β (( 1 + 1 ) Β· π§) = (( 1 + 1 ) Β· π)) |
24 | | oveq2 7416 |
. . . . . 6
β’ (π§ = π β ( 1 Β· π§) = ( 1 Β· π)) |
25 | 24, 24 | oveq12d 7426 |
. . . . 5
β’ (π§ = π β (( 1 Β· π§) + ( 1 Β· π§)) = (( 1 Β· π) + ( 1 Β· π))) |
26 | 23, 25 | eqeq12d 2748 |
. . . 4
β’ (π§ = π β ((( 1 + 1 ) Β· π§) = (( 1 Β· π§) + ( 1 Β· π§)) β (( 1 + 1 ) Β· π) = (( 1 Β· π) + ( 1 Β· π)))) |
27 | 17, 22, 26 | rspc3v 3627 |
. . 3
β’ (( 1 β π΅ β§ 1 β π΅ β§ π β π΅) β (βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§)) β (( 1 + 1 ) Β· π) = (( 1 Β· π) + ( 1 Β· π)))) |
28 | 11, 12, 27 | sylc 65 |
. 2
β’ (π β (( 1 + 1 ) Β· π) = (( 1 Β· π) + ( 1 Β· π))) |
29 | 9, 28 | eqtr4d 2775 |
1
β’ (π β (π + π) = (( 1 + 1 ) Β· π)) |