MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringcom Structured version   Visualization version   GIF version

Theorem ringcom 19325
Description: Commutativity of the additive group of a ring. (See also lmodcom 19673.) (Contributed by Gérard Lang, 4-Dec-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringcom ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem ringcom
StepHypRef Expression
1 simp1 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
2 ringacl.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3 eqid 2798 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
42, 3ringidcl 19314 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
51, 4syl 17 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (1r𝑅) ∈ 𝐵)
6 ringacl.p . . . . . . . . . 10 + = (+g𝑅)
72, 6ringacl 19324 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
81, 5, 5, 7syl3anc 1368 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
9 simp2 1134 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
10 simp3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
11 eqid 2798 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
122, 6, 11ringdi 19312 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((1r𝑅) + (1r𝑅)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
131, 8, 9, 10, 12syl13anc 1369 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
142, 6ringacl 19324 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
152, 6, 11ringdir 19313 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
161, 5, 5, 14, 15syl13anc 1369 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
1713, 16eqtr3d 2835 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
182, 6, 11ringdir 19313 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑋𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
191, 5, 5, 9, 18syl13anc 1369 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
202, 11, 3ringlidm 19317 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
211, 9, 20syl2anc 587 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
2221, 21oveq12d 7153 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)) = (𝑋 + 𝑋))
2319, 22eqtrd 2833 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (𝑋 + 𝑋))
242, 6, 11ringdir 19313 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
251, 5, 5, 10, 24syl13anc 1369 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
262, 11, 3ringlidm 19317 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
271, 10, 26syl2anc 587 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
2827, 27oveq12d 7153 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)) = (𝑌 + 𝑌))
2925, 28eqtrd 2833 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (𝑌 + 𝑌))
3023, 29oveq12d 7153 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
312, 11, 3ringlidm 19317 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
321, 14, 31syl2anc 587 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3332, 32oveq12d 7153 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3417, 30, 333eqtr3d 2841 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
35 ringgrp 19295 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
361, 35syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
372, 6ringacl 19324 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑋𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
381, 9, 9, 37syl3anc 1368 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
392, 6grpass 18104 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑋) ∈ 𝐵𝑌𝐵𝑌𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4036, 38, 10, 10, 39syl13anc 1369 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
412, 6grpass 18104 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4236, 14, 9, 10, 41syl13anc 1369 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4334, 40, 423eqtr4d 2843 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
442, 6ringacl 19324 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
451, 38, 10, 44syl3anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
462, 6ringacl 19324 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
471, 14, 9, 46syl3anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
482, 6grprcan 18129 . . . . 5 ((𝑅 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝐵 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵𝑌𝐵)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
4936, 45, 47, 10, 48syl13anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5043, 49mpbid 235 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
512, 6grpass 18104 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5236, 9, 9, 10, 51syl13anc 1369 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
532, 6grpass 18104 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5436, 9, 10, 9, 53syl13anc 1369 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5550, 52, 543eqtr3d 2841 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
562, 6ringacl 19324 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
57563com23 1123 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
582, 6grplcan 18153 . . 3 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
5936, 14, 57, 9, 58syl13anc 1369 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6055, 59mpbid 235 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Grpcgrp 18095  1rcur 19244  Ringcrg 19290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ur 19245  df-ring 19292
This theorem is referenced by:  ringabl  19326
  Copyright terms: Public domain W3C validator