Proof of Theorem ringcom
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ringacl.b | . . . . . 6
⊢ 𝐵 = (Base‘𝑅) | 
| 2 |  | ringacl.p | . . . . . 6
⊢  + =
(+g‘𝑅) | 
| 3 | 1, 2 | ringcomlem 20276 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) | 
| 4 |  | simp1 1137 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | 
| 5 | 4 | ringgrpd 20239 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Grp) | 
| 6 |  | simp2 1138 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | 
| 7 | 1, 2 | ringacl 20275 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 + 𝑋) ∈ 𝐵) | 
| 8 | 4, 6, 6, 7 | syl3anc 1373 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑋) ∈ 𝐵) | 
| 9 |  | simp3 1139 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | 
| 10 | 1, 2 | grpass 18960 | . . . . . 6
⊢ ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) | 
| 11 | 5, 8, 9, 9, 10 | syl13anc 1374 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) | 
| 12 | 1, 2 | ringacl 20275 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | 
| 13 | 1, 2 | grpass 18960 | . . . . . 6
⊢ ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) | 
| 14 | 5, 12, 6, 9, 13 | syl13anc 1374 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) | 
| 15 | 3, 11, 14 | 3eqtr4d 2787 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌)) | 
| 16 | 1, 2 | ringacl 20275 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵) | 
| 17 | 4, 8, 9, 16 | syl3anc 1373 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵) | 
| 18 | 1, 2 | ringacl 20275 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵) | 
| 19 | 4, 12, 6, 18 | syl3anc 1373 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵) | 
| 20 | 1, 2 | grprcan 18991 | . . . . 5
⊢ ((𝑅 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝐵 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))) | 
| 21 | 5, 17, 19, 9, 20 | syl13anc 1374 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))) | 
| 22 | 15, 21 | mpbid 232 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)) | 
| 23 | 1, 2 | grpass 18960 | . . . 4
⊢ ((𝑅 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌))) | 
| 24 | 5, 6, 6, 9, 23 | syl13anc 1374 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌))) | 
| 25 | 1, 2 | grpass 18960 | . . . 4
⊢ ((𝑅 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋))) | 
| 26 | 5, 6, 9, 6, 25 | syl13anc 1374 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋))) | 
| 27 | 22, 24, 26 | 3eqtr3d 2785 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋))) | 
| 28 | 1, 2 | ringacl 20275 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) | 
| 29 | 28 | 3com23 1127 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) | 
| 30 | 1, 2 | grplcan 19018 | . . 3
⊢ ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) | 
| 31 | 5, 12, 29, 6, 30 | syl13anc 1374 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) | 
| 32 | 27, 31 | mpbid 232 | 1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |