MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringcom Structured version   Visualization version   GIF version

Theorem ringcom 20245
Description: Commutativity of the additive group of a ring. (See also lmodcom 20870.) This proof requires the existence of a multiplicative identity, and the existence of additive inverses. Therefore, this proof is not applicable for semirings. (Contributed by Gérard Lang, 4-Dec-2014.) (Proof shortened by AV, 1-Feb-2025.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringcom ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem ringcom
StepHypRef Expression
1 ringacl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 ringacl.p . . . . . 6 + = (+g𝑅)
31, 2ringcomlem 20244 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4 simp1 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
54ringgrpd 20207 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
6 simp2 1137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
71, 2ringacl 20243 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑋𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
84, 6, 6, 7syl3anc 1373 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
9 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
101, 2grpass 18930 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑋) ∈ 𝐵𝑌𝐵𝑌𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
115, 8, 9, 9, 10syl13anc 1374 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
121, 2ringacl 20243 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
131, 2grpass 18930 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
145, 12, 6, 9, 13syl13anc 1374 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
153, 11, 143eqtr4d 2781 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
161, 2ringacl 20243 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
174, 8, 9, 16syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
181, 2ringacl 20243 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
194, 12, 6, 18syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
201, 2grprcan 18961 . . . . 5 ((𝑅 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝐵 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵𝑌𝐵)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
215, 17, 19, 9, 20syl13anc 1374 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
2215, 21mpbid 232 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
231, 2grpass 18930 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
245, 6, 6, 9, 23syl13anc 1374 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
251, 2grpass 18930 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
265, 6, 9, 6, 25syl13anc 1374 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
2722, 24, 263eqtr3d 2779 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
281, 2ringacl 20243 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
29283com23 1126 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
301, 2grplcan 18988 . . 3 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
315, 12, 29, 6, 30syl13anc 1374 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
3227, 31mpbid 232 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921  Ringcrg 20198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-mgp 20106  df-ur 20147  df-ring 20200
This theorem is referenced by:  ringabl  20246  evl1deg1  33594  evl1deg3  33596
  Copyright terms: Public domain W3C validator