Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringcom Structured version   Visualization version   GIF version

Theorem ringcom 18966
 Description: Commutativity of the additive group of a ring. (See also lmodcom 19301.) (Contributed by Gérard Lang, 4-Dec-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringcom ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem ringcom
StepHypRef Expression
1 simp1 1127 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
2 ringacl.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3 eqid 2777 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
42, 3ringidcl 18955 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
51, 4syl 17 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (1r𝑅) ∈ 𝐵)
6 ringacl.p . . . . . . . . . 10 + = (+g𝑅)
72, 6ringacl 18965 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
81, 5, 5, 7syl3anc 1439 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
9 simp2 1128 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
10 simp3 1129 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
11 eqid 2777 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
122, 6, 11ringdi 18953 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((1r𝑅) + (1r𝑅)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
131, 8, 9, 10, 12syl13anc 1440 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
142, 6ringacl 18965 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
152, 6, 11ringdir 18954 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
161, 5, 5, 14, 15syl13anc 1440 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
1713, 16eqtr3d 2815 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
182, 6, 11ringdir 18954 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑋𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
191, 5, 5, 9, 18syl13anc 1440 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
202, 11, 3ringlidm 18958 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
211, 9, 20syl2anc 579 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
2221, 21oveq12d 6940 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)) = (𝑋 + 𝑋))
2319, 22eqtrd 2813 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (𝑋 + 𝑋))
242, 6, 11ringdir 18954 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
251, 5, 5, 10, 24syl13anc 1440 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
262, 11, 3ringlidm 18958 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
271, 10, 26syl2anc 579 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
2827, 27oveq12d 6940 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)) = (𝑌 + 𝑌))
2925, 28eqtrd 2813 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (𝑌 + 𝑌))
3023, 29oveq12d 6940 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
312, 11, 3ringlidm 18958 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
321, 14, 31syl2anc 579 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3332, 32oveq12d 6940 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3417, 30, 333eqtr3d 2821 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
35 ringgrp 18939 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
361, 35syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
372, 6ringacl 18965 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑋𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
381, 9, 9, 37syl3anc 1439 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
392, 6grpass 17818 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑋) ∈ 𝐵𝑌𝐵𝑌𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4036, 38, 10, 10, 39syl13anc 1440 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
412, 6grpass 17818 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4236, 14, 9, 10, 41syl13anc 1440 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4334, 40, 423eqtr4d 2823 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
442, 6ringacl 18965 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
451, 38, 10, 44syl3anc 1439 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
462, 6ringacl 18965 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
471, 14, 9, 46syl3anc 1439 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
482, 6grprcan 17842 . . . . 5 ((𝑅 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝐵 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵𝑌𝐵)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
4936, 45, 47, 10, 48syl13anc 1440 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5043, 49mpbid 224 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
512, 6grpass 17818 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5236, 9, 9, 10, 51syl13anc 1440 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
532, 6grpass 17818 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5436, 9, 10, 9, 53syl13anc 1440 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5550, 52, 543eqtr3d 2821 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
562, 6ringacl 18965 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
57563com23 1117 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
582, 6grplcan 17864 . . 3 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
5936, 14, 57, 9, 58syl13anc 1440 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6055, 59mpbid 224 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ w3a 1071   = wceq 1601   ∈ wcel 2106  ‘cfv 6135  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  .rcmulr 16339  Grpcgrp 17809  1rcur 18888  Ringcrg 18934 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-plusg 16351  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-mgp 18877  df-ur 18889  df-ring 18936 This theorem is referenced by:  ringabl  18967
 Copyright terms: Public domain W3C validator