![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgisid | Structured version Visualization version GIF version |
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
srgz.b | โข ๐ต = (Baseโ๐ ) |
srgz.t | โข ยท = (.rโ๐ ) |
srgz.z | โข 0 = (0gโ๐ ) |
srgisid.1 | โข (๐ โ ๐ โ SRing) |
srgisid.2 | โข (๐ โ ๐ โ ๐ต) |
srgisid.3 | โข ((๐ โง ๐ฅ โ ๐ต) โ (๐ ยท ๐ฅ) = ๐) |
Ref | Expression |
---|---|
srgisid | โข (๐ โ ๐ = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgisid.3 | . . . 4 โข ((๐ โง ๐ฅ โ ๐ต) โ (๐ ยท ๐ฅ) = ๐) | |
2 | 1 | ralrimiva 3145 | . . 3 โข (๐ โ โ๐ฅ โ ๐ต (๐ ยท ๐ฅ) = ๐) |
3 | srgisid.1 | . . . 4 โข (๐ โ ๐ โ SRing) | |
4 | srgz.b | . . . . 5 โข ๐ต = (Baseโ๐ ) | |
5 | srgz.z | . . . . 5 โข 0 = (0gโ๐ ) | |
6 | 4, 5 | srg0cl 20101 | . . . 4 โข (๐ โ SRing โ 0 โ ๐ต) |
7 | oveq2 7420 | . . . . . 6 โข (๐ฅ = 0 โ (๐ ยท ๐ฅ) = (๐ ยท 0 )) | |
8 | 7 | eqeq1d 2733 | . . . . 5 โข (๐ฅ = 0 โ ((๐ ยท ๐ฅ) = ๐ โ (๐ ยท 0 ) = ๐)) |
9 | 8 | rspcv 3608 | . . . 4 โข ( 0 โ ๐ต โ (โ๐ฅ โ ๐ต (๐ ยท ๐ฅ) = ๐ โ (๐ ยท 0 ) = ๐)) |
10 | 3, 6, 9 | 3syl 18 | . . 3 โข (๐ โ (โ๐ฅ โ ๐ต (๐ ยท ๐ฅ) = ๐ โ (๐ ยท 0 ) = ๐)) |
11 | 2, 10 | mpd 15 | . 2 โข (๐ โ (๐ ยท 0 ) = ๐) |
12 | srgisid.2 | . . 3 โข (๐ โ ๐ โ ๐ต) | |
13 | srgz.t | . . . 4 โข ยท = (.rโ๐ ) | |
14 | 4, 13, 5 | srgrz 20108 | . . 3 โข ((๐ โ SRing โง ๐ โ ๐ต) โ (๐ ยท 0 ) = 0 ) |
15 | 3, 12, 14 | syl2anc 583 | . 2 โข (๐ โ (๐ ยท 0 ) = 0 ) |
16 | 11, 15 | eqtr3d 2773 | 1 โข (๐ โ ๐ = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1540 โ wcel 2105 โwral 3060 โcfv 6543 (class class class)co 7412 Basecbs 17151 .rcmulr 17205 0gc0g 17392 SRingcsrg 20087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7368 df-ov 7415 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-cmn 19698 df-srg 20088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |