| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgisid | Structured version Visualization version GIF version | ||
| Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.) |
| Ref | Expression |
|---|---|
| srgz.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgz.t | ⊢ · = (.r‘𝑅) |
| srgz.z | ⊢ 0 = (0g‘𝑅) |
| srgisid.1 | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| srgisid.2 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| srgisid.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) |
| Ref | Expression |
|---|---|
| srgisid | ⊢ (𝜑 → 𝑍 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgisid.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) | |
| 2 | 1 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍) |
| 3 | srgisid.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 4 | srgz.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | srgz.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | srg0cl 20116 | . . . 4 ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
| 7 | oveq2 7398 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑍 · 𝑥) = (𝑍 · 0 )) | |
| 8 | 7 | eqeq1d 2732 | . . . . 5 ⊢ (𝑥 = 0 → ((𝑍 · 𝑥) = 𝑍 ↔ (𝑍 · 0 ) = 𝑍)) |
| 9 | 8 | rspcv 3587 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
| 10 | 3, 6, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
| 11 | 2, 10 | mpd 15 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 𝑍) |
| 12 | srgisid.2 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 13 | srgz.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 14 | 4, 13, 5 | srgrz 20123 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑍 ∈ 𝐵) → (𝑍 · 0 ) = 0 ) |
| 15 | 3, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 0 ) |
| 16 | 11, 15 | eqtr3d 2767 | 1 ⊢ (𝜑 → 𝑍 = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 0gc0g 17409 SRingcsrg 20102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-cmn 19719 df-srg 20103 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |