Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srgisid | Structured version Visualization version GIF version |
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
srgz.b | ⊢ 𝐵 = (Base‘𝑅) |
srgz.t | ⊢ · = (.r‘𝑅) |
srgz.z | ⊢ 0 = (0g‘𝑅) |
srgisid.1 | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgisid.2 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
srgisid.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) |
Ref | Expression |
---|---|
srgisid | ⊢ (𝜑 → 𝑍 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgisid.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) | |
2 | 1 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍) |
3 | srgisid.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
4 | srgz.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
5 | srgz.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | srg0cl 19670 | . . . 4 ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
7 | oveq2 7263 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑍 · 𝑥) = (𝑍 · 0 )) | |
8 | 7 | eqeq1d 2740 | . . . . 5 ⊢ (𝑥 = 0 → ((𝑍 · 𝑥) = 𝑍 ↔ (𝑍 · 0 ) = 𝑍)) |
9 | 8 | rspcv 3547 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
10 | 3, 6, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
11 | 2, 10 | mpd 15 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 𝑍) |
12 | srgisid.2 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
13 | srgz.t | . . . 4 ⊢ · = (.r‘𝑅) | |
14 | 4, 13, 5 | srgrz 19677 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑍 ∈ 𝐵) → (𝑍 · 0 ) = 0 ) |
15 | 3, 12, 14 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 0 ) |
16 | 11, 15 | eqtr3d 2780 | 1 ⊢ (𝜑 → 𝑍 = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 0gc0g 17067 SRingcsrg 19656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cmn 19303 df-srg 19657 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |