MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgisid Structured version   Visualization version   GIF version

Theorem srgisid 20125
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
srgz.b 𝐵 = (Base‘𝑅)
srgz.t · = (.r𝑅)
srgz.z 0 = (0g𝑅)
srgisid.1 (𝜑𝑅 ∈ SRing)
srgisid.2 (𝜑𝑍𝐵)
srgisid.3 ((𝜑𝑥𝐵) → (𝑍 · 𝑥) = 𝑍)
Assertion
Ref Expression
srgisid (𝜑𝑍 = 0 )
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥, 0   𝑥,𝑍   𝜑,𝑥

Proof of Theorem srgisid
StepHypRef Expression
1 srgisid.3 . . . 4 ((𝜑𝑥𝐵) → (𝑍 · 𝑥) = 𝑍)
21ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐵 (𝑍 · 𝑥) = 𝑍)
3 srgisid.1 . . . 4 (𝜑𝑅 ∈ SRing)
4 srgz.b . . . . 5 𝐵 = (Base‘𝑅)
5 srgz.z . . . . 5 0 = (0g𝑅)
64, 5srg0cl 20116 . . . 4 (𝑅 ∈ SRing → 0𝐵)
7 oveq2 7398 . . . . . 6 (𝑥 = 0 → (𝑍 · 𝑥) = (𝑍 · 0 ))
87eqeq1d 2732 . . . . 5 (𝑥 = 0 → ((𝑍 · 𝑥) = 𝑍 ↔ (𝑍 · 0 ) = 𝑍))
98rspcv 3587 . . . 4 ( 0𝐵 → (∀𝑥𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍))
103, 6, 93syl 18 . . 3 (𝜑 → (∀𝑥𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍))
112, 10mpd 15 . 2 (𝜑 → (𝑍 · 0 ) = 𝑍)
12 srgisid.2 . . 3 (𝜑𝑍𝐵)
13 srgz.t . . . 4 · = (.r𝑅)
144, 13, 5srgrz 20123 . . 3 ((𝑅 ∈ SRing ∧ 𝑍𝐵) → (𝑍 · 0 ) = 0 )
153, 12, 14syl2anc 584 . 2 (𝜑 → (𝑍 · 0 ) = 0 )
1611, 15eqtr3d 2767 1 (𝜑𝑍 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  0gc0g 17409  SRingcsrg 20102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-cmn 19719  df-srg 20103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator