| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgisid | Structured version Visualization version GIF version | ||
| Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.) |
| Ref | Expression |
|---|---|
| srgz.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgz.t | ⊢ · = (.r‘𝑅) |
| srgz.z | ⊢ 0 = (0g‘𝑅) |
| srgisid.1 | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| srgisid.2 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| srgisid.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) |
| Ref | Expression |
|---|---|
| srgisid | ⊢ (𝜑 → 𝑍 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgisid.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) | |
| 2 | 1 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍) |
| 3 | srgisid.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 4 | srgz.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | srgz.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | srg0cl 20120 | . . . 4 ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
| 7 | oveq2 7360 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑍 · 𝑥) = (𝑍 · 0 )) | |
| 8 | 7 | eqeq1d 2735 | . . . . 5 ⊢ (𝑥 = 0 → ((𝑍 · 𝑥) = 𝑍 ↔ (𝑍 · 0 ) = 𝑍)) |
| 9 | 8 | rspcv 3569 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
| 10 | 3, 6, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
| 11 | 2, 10 | mpd 15 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 𝑍) |
| 12 | srgisid.2 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 13 | srgz.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 14 | 4, 13, 5 | srgrz 20127 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑍 ∈ 𝐵) → (𝑍 · 0 ) = 0 ) |
| 15 | 3, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 0 ) |
| 16 | 11, 15 | eqtr3d 2770 | 1 ⊢ (𝜑 → 𝑍 = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 0gc0g 17345 SRingcsrg 20106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-cmn 19696 df-srg 20107 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |