Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srgisid | Structured version Visualization version GIF version |
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
srgz.b | ⊢ 𝐵 = (Base‘𝑅) |
srgz.t | ⊢ · = (.r‘𝑅) |
srgz.z | ⊢ 0 = (0g‘𝑅) |
srgisid.1 | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgisid.2 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
srgisid.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) |
Ref | Expression |
---|---|
srgisid | ⊢ (𝜑 → 𝑍 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgisid.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) | |
2 | 1 | ralrimiva 3110 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍) |
3 | srgisid.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
4 | srgz.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
5 | srgz.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | srg0cl 19753 | . . . 4 ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
7 | oveq2 7279 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑍 · 𝑥) = (𝑍 · 0 )) | |
8 | 7 | eqeq1d 2742 | . . . . 5 ⊢ (𝑥 = 0 → ((𝑍 · 𝑥) = 𝑍 ↔ (𝑍 · 0 ) = 𝑍)) |
9 | 8 | rspcv 3556 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
10 | 3, 6, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
11 | 2, 10 | mpd 15 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 𝑍) |
12 | srgisid.2 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
13 | srgz.t | . . . 4 ⊢ · = (.r‘𝑅) | |
14 | 4, 13, 5 | srgrz 19760 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑍 ∈ 𝐵) → (𝑍 · 0 ) = 0 ) |
15 | 3, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 0 ) |
16 | 11, 15 | eqtr3d 2782 | 1 ⊢ (𝜑 → 𝑍 = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 .rcmulr 16961 0gc0g 17148 SRingcsrg 19739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-riota 7228 df-ov 7274 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-cmn 19386 df-srg 19740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |