![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringo2times | Structured version Visualization version GIF version |
Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.) Variant of o2timesd 20141 for rings. (Revised by AV, 5-Feb-2025.) |
Ref | Expression |
---|---|
ringo2times.b | ⊢ 𝐵 = (Base‘𝑅) |
ringo2times.p | ⊢ + = (+g‘𝑅) |
ringo2times.t | ⊢ · = (.r‘𝑅) |
ringo2times.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringo2times | ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringo2times.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | ringo2times.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
3 | ringo2times.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
4 | 1, 2, 3 | ringdir 20190 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
5 | 4 | ralrimivvva 3198 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
7 | ringo2times.u | . . . 4 ⊢ 1 = (1r‘𝑅) | |
8 | 1, 7 | ringidcl 20191 | . . 3 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
9 | 8 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → 1 ∈ 𝐵) |
10 | 1, 3, 7 | ringlidm 20194 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) |
11 | 10 | ralrimiva 3141 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ 𝐵 ( 1 · 𝑥) = 𝑥) |
12 | 11 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ( 1 · 𝑥) = 𝑥) |
13 | simpr 484 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
14 | 6, 9, 12, 13 | o2timesd 20141 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ‘cfv 6542 (class class class)co 7414 Basecbs 17171 +gcplusg 17224 .rcmulr 17225 1rcur 20112 Ringcrg 20164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-plusg 17237 df-0g 17414 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-mgp 20066 df-ur 20113 df-ring 20166 |
This theorem is referenced by: ringadd2 20201 |
Copyright terms: Public domain | W3C validator |