MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringo2times Structured version   Visualization version   GIF version

Theorem ringo2times 20091
Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.) Variant of o2timesd 20032 for rings. (Revised by AV, 5-Feb-2025.)
Hypotheses
Ref Expression
ringo2times.b ๐ต = (Baseโ€˜๐‘…)
ringo2times.p + = (+gโ€˜๐‘…)
ringo2times.t ยท = (.rโ€˜๐‘…)
ringo2times.u 1 = (1rโ€˜๐‘…)
Assertion
Ref Expression
ringo2times ((๐‘… โˆˆ Ring โˆง ๐ด โˆˆ ๐ต) โ†’ (๐ด + ๐ด) = (( 1 + 1 ) ยท ๐ด))

Proof of Theorem ringo2times
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘ง are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringo2times.b . . . . 5 ๐ต = (Baseโ€˜๐‘…)
2 ringo2times.p . . . . 5 + = (+gโ€˜๐‘…)
3 ringo2times.t . . . . 5 ยท = (.rโ€˜๐‘…)
41, 2, 3ringdir 20081 . . . 4 ((๐‘… โˆˆ Ring โˆง (๐‘ฅ โˆˆ ๐ต โˆง ๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต)) โ†’ ((๐‘ฅ + ๐‘ฆ) ยท ๐‘ง) = ((๐‘ฅ ยท ๐‘ง) + (๐‘ฆ ยท ๐‘ง)))
54ralrimivvva 3203 . . 3 (๐‘… โˆˆ Ring โ†’ โˆ€๐‘ฅ โˆˆ ๐ต โˆ€๐‘ฆ โˆˆ ๐ต โˆ€๐‘ง โˆˆ ๐ต ((๐‘ฅ + ๐‘ฆ) ยท ๐‘ง) = ((๐‘ฅ ยท ๐‘ง) + (๐‘ฆ ยท ๐‘ง)))
65adantr 481 . 2 ((๐‘… โˆˆ Ring โˆง ๐ด โˆˆ ๐ต) โ†’ โˆ€๐‘ฅ โˆˆ ๐ต โˆ€๐‘ฆ โˆˆ ๐ต โˆ€๐‘ง โˆˆ ๐ต ((๐‘ฅ + ๐‘ฆ) ยท ๐‘ง) = ((๐‘ฅ ยท ๐‘ง) + (๐‘ฆ ยท ๐‘ง)))
7 ringo2times.u . . . 4 1 = (1rโ€˜๐‘…)
81, 7ringidcl 20082 . . 3 (๐‘… โˆˆ Ring โ†’ 1 โˆˆ ๐ต)
98adantr 481 . 2 ((๐‘… โˆˆ Ring โˆง ๐ด โˆˆ ๐ต) โ†’ 1 โˆˆ ๐ต)
101, 3, 7ringlidm 20085 . . . 4 ((๐‘… โˆˆ Ring โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ( 1 ยท ๐‘ฅ) = ๐‘ฅ)
1110ralrimiva 3146 . . 3 (๐‘… โˆˆ Ring โ†’ โˆ€๐‘ฅ โˆˆ ๐ต ( 1 ยท ๐‘ฅ) = ๐‘ฅ)
1211adantr 481 . 2 ((๐‘… โˆˆ Ring โˆง ๐ด โˆˆ ๐ต) โ†’ โˆ€๐‘ฅ โˆˆ ๐ต ( 1 ยท ๐‘ฅ) = ๐‘ฅ)
13 simpr 485 . 2 ((๐‘… โˆˆ Ring โˆง ๐ด โˆˆ ๐ต) โ†’ ๐ด โˆˆ ๐ต)
146, 9, 12, 13o2timesd 20032 1 ((๐‘… โˆˆ Ring โˆง ๐ด โˆˆ ๐ต) โ†’ (๐ด + ๐ด) = (( 1 + 1 ) ยท ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   = wceq 1541   โˆˆ wcel 2106  โˆ€wral 3061  โ€˜cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  .rcmulr 17197  1rcur 20003  Ringcrg 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mgp 19987  df-ur 20004  df-ring 20057
This theorem is referenced by:  ringadd2  20092
  Copyright terms: Public domain W3C validator