MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringo2times Structured version   Visualization version   GIF version

Theorem ringo2times 20193
Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.) Variant of o2timesd 20128 for rings. (Revised by AV, 5-Feb-2025.)
Hypotheses
Ref Expression
ringo2times.b 𝐵 = (Base‘𝑅)
ringo2times.p + = (+g𝑅)
ringo2times.t · = (.r𝑅)
ringo2times.u 1 = (1r𝑅)
Assertion
Ref Expression
ringo2times ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴))

Proof of Theorem ringo2times
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringo2times.b . . . . 5 𝐵 = (Base‘𝑅)
2 ringo2times.p . . . . 5 + = (+g𝑅)
3 ringo2times.t . . . . 5 · = (.r𝑅)
41, 2, 3ringdir 20180 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
54ralrimivvva 3178 . . 3 (𝑅 ∈ Ring → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
65adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
7 ringo2times.u . . . 4 1 = (1r𝑅)
81, 7ringidcl 20183 . . 3 (𝑅 ∈ Ring → 1𝐵)
98adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 1𝐵)
101, 3, 7ringlidm 20187 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
1110ralrimiva 3124 . . 3 (𝑅 ∈ Ring → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
1211adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
13 simpr 484 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 𝐴𝐵)
146, 9, 12, 13o2timesd 20128 1 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  1rcur 20099  Ringcrg 20151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mgp 20059  df-ur 20100  df-ring 20153
This theorem is referenced by:  ringadd2  20194
  Copyright terms: Public domain W3C validator