| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabiotafun | Structured version Visualization version GIF version | ||
| Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.) |
| Ref | Expression |
|---|---|
| opabiota.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
| Ref | Expression |
|---|---|
| opabiotafun | ⊢ Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab 6576 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦 ∣ 𝜑} = {𝑦}) | |
| 2 | mo2icl 3702 | . . . . 5 ⊢ (∀𝑧({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) → ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) | |
| 3 | unieq 4899 | . . . . . 6 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → ∪ {𝑦 ∣ 𝜑} = ∪ {𝑧}) | |
| 4 | unisnv 4908 | . . . . . 6 ⊢ ∪ {𝑧} = 𝑧 | |
| 5 | 3, 4 | eqtr2di 2788 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) |
| 6 | 2, 5 | mpg 1797 | . . . 4 ⊢ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧} |
| 7 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑧{𝑦 ∣ 𝜑} = {𝑦} | |
| 8 | nfab1 2901 | . . . . . 6 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
| 9 | 8 | nfeq1 2915 | . . . . 5 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} = {𝑧} |
| 10 | sneq 4616 | . . . . . 6 ⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) | |
| 11 | 10 | eqeq2d 2747 | . . . . 5 ⊢ (𝑦 = 𝑧 → ({𝑦 ∣ 𝜑} = {𝑦} ↔ {𝑦 ∣ 𝜑} = {𝑧})) |
| 12 | 7, 9, 11 | cbvmow 2603 | . . . 4 ⊢ (∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} ↔ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) |
| 13 | 6, 12 | mpbir 231 | . . 3 ⊢ ∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} |
| 14 | 1, 13 | mpgbir 1799 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
| 15 | opabiota.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | |
| 16 | 15 | funeqi 6562 | . 2 ⊢ (Fun 𝐹 ↔ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}}) |
| 17 | 14, 16 | mpbir 231 | 1 ⊢ Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃*wmo 2538 {cab 2714 {csn 4606 ∪ cuni 4888 {copab 5186 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: opabiota 6966 |
| Copyright terms: Public domain | W3C validator |