MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiotafun Structured version   Visualization version   GIF version

Theorem opabiotafun 6962
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.)
Hypothesis
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
Assertion
Ref Expression
opabiotafun Fun 𝐹
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabiotafun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funopab 6573 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦𝜑} = {𝑦})
2 mo2icl 3702 . . . . 5 (∀𝑧({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑}) → ∃*𝑧{𝑦𝜑} = {𝑧})
3 unieq 4910 . . . . . 6 ({𝑦𝜑} = {𝑧} → {𝑦𝜑} = {𝑧})
4 unisnv 4921 . . . . . 6 {𝑧} = 𝑧
53, 4eqtr2di 2781 . . . . 5 ({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑})
62, 5mpg 1791 . . . 4 ∃*𝑧{𝑦𝜑} = {𝑧}
7 nfv 1909 . . . . 5 𝑧{𝑦𝜑} = {𝑦}
8 nfab1 2897 . . . . . 6 𝑦{𝑦𝜑}
98nfeq1 2910 . . . . 5 𝑦{𝑦𝜑} = {𝑧}
10 sneq 4630 . . . . . 6 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1110eqeq2d 2735 . . . . 5 (𝑦 = 𝑧 → ({𝑦𝜑} = {𝑦} ↔ {𝑦𝜑} = {𝑧}))
127, 9, 11cbvmow 2589 . . . 4 (∃*𝑦{𝑦𝜑} = {𝑦} ↔ ∃*𝑧{𝑦𝜑} = {𝑧})
136, 12mpbir 230 . . 3 ∃*𝑦{𝑦𝜑} = {𝑦}
141, 13mpgbir 1793 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
15 opabiota.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
1615funeqi 6559 . 2 (Fun 𝐹 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
1714, 16mpbir 230 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  ∃*wmo 2524  {cab 2701  {csn 4620   cuni 4899  {copab 5200  Fun wfun 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-fun 6535
This theorem is referenced by:  opabiota  6964
  Copyright terms: Public domain W3C validator