MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiotafun Structured version   Visualization version   GIF version

Theorem opabiotafun 6964
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.)
Hypothesis
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
Assertion
Ref Expression
opabiotafun Fun 𝐹
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabiotafun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funopab 6576 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦𝜑} = {𝑦})
2 mo2icl 3702 . . . . 5 (∀𝑧({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑}) → ∃*𝑧{𝑦𝜑} = {𝑧})
3 unieq 4899 . . . . . 6 ({𝑦𝜑} = {𝑧} → {𝑦𝜑} = {𝑧})
4 unisnv 4908 . . . . . 6 {𝑧} = 𝑧
53, 4eqtr2di 2788 . . . . 5 ({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑})
62, 5mpg 1797 . . . 4 ∃*𝑧{𝑦𝜑} = {𝑧}
7 nfv 1914 . . . . 5 𝑧{𝑦𝜑} = {𝑦}
8 nfab1 2901 . . . . . 6 𝑦{𝑦𝜑}
98nfeq1 2915 . . . . 5 𝑦{𝑦𝜑} = {𝑧}
10 sneq 4616 . . . . . 6 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1110eqeq2d 2747 . . . . 5 (𝑦 = 𝑧 → ({𝑦𝜑} = {𝑦} ↔ {𝑦𝜑} = {𝑧}))
127, 9, 11cbvmow 2603 . . . 4 (∃*𝑦{𝑦𝜑} = {𝑦} ↔ ∃*𝑧{𝑦𝜑} = {𝑧})
136, 12mpbir 231 . . 3 ∃*𝑦{𝑦𝜑} = {𝑦}
141, 13mpgbir 1799 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
15 opabiota.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
1615funeqi 6562 . 2 (Fun 𝐹 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
1714, 16mpbir 231 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ∃*wmo 2538  {cab 2714  {csn 4606   cuni 4888  {copab 5186  Fun wfun 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-fun 6538
This theorem is referenced by:  opabiota  6966
  Copyright terms: Public domain W3C validator