MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiotafun Structured version   Visualization version   GIF version

Theorem opabiotafun 6843
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.)
Hypothesis
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
Assertion
Ref Expression
opabiotafun Fun 𝐹
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabiotafun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funopab 6465 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦𝜑} = {𝑦})
2 mo2icl 3652 . . . . 5 (∀𝑧({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑}) → ∃*𝑧{𝑦𝜑} = {𝑧})
3 unieq 4855 . . . . . 6 ({𝑦𝜑} = {𝑧} → {𝑦𝜑} = {𝑧})
4 vex 3434 . . . . . . 7 𝑧 ∈ V
54unisn 4866 . . . . . 6 {𝑧} = 𝑧
63, 5eqtr2di 2796 . . . . 5 ({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑})
72, 6mpg 1803 . . . 4 ∃*𝑧{𝑦𝜑} = {𝑧}
8 nfv 1920 . . . . 5 𝑧{𝑦𝜑} = {𝑦}
9 nfab1 2910 . . . . . 6 𝑦{𝑦𝜑}
109nfeq1 2923 . . . . 5 𝑦{𝑦𝜑} = {𝑧}
11 sneq 4576 . . . . . 6 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1211eqeq2d 2750 . . . . 5 (𝑦 = 𝑧 → ({𝑦𝜑} = {𝑦} ↔ {𝑦𝜑} = {𝑧}))
138, 10, 12cbvmow 2604 . . . 4 (∃*𝑦{𝑦𝜑} = {𝑦} ↔ ∃*𝑧{𝑦𝜑} = {𝑧})
147, 13mpbir 230 . . 3 ∃*𝑦{𝑦𝜑} = {𝑦}
151, 14mpgbir 1805 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
16 opabiota.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
1716funeqi 6451 . 2 (Fun 𝐹 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
1815, 17mpbir 230 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  ∃*wmo 2539  {cab 2716  {csn 4566   cuni 4844  {copab 5140  Fun wfun 6424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-fun 6432
This theorem is referenced by:  opabiota  6845
  Copyright terms: Public domain W3C validator