Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabiotafun | Structured version Visualization version GIF version |
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.) |
Ref | Expression |
---|---|
opabiota.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
Ref | Expression |
---|---|
opabiotafun | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 6465 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦 ∣ 𝜑} = {𝑦}) | |
2 | mo2icl 3652 | . . . . 5 ⊢ (∀𝑧({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) → ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) | |
3 | unieq 4855 | . . . . . 6 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → ∪ {𝑦 ∣ 𝜑} = ∪ {𝑧}) | |
4 | vex 3434 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
5 | 4 | unisn 4866 | . . . . . 6 ⊢ ∪ {𝑧} = 𝑧 |
6 | 3, 5 | eqtr2di 2796 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) |
7 | 2, 6 | mpg 1803 | . . . 4 ⊢ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧} |
8 | nfv 1920 | . . . . 5 ⊢ Ⅎ𝑧{𝑦 ∣ 𝜑} = {𝑦} | |
9 | nfab1 2910 | . . . . . 6 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
10 | 9 | nfeq1 2923 | . . . . 5 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} = {𝑧} |
11 | sneq 4576 | . . . . . 6 ⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) | |
12 | 11 | eqeq2d 2750 | . . . . 5 ⊢ (𝑦 = 𝑧 → ({𝑦 ∣ 𝜑} = {𝑦} ↔ {𝑦 ∣ 𝜑} = {𝑧})) |
13 | 8, 10, 12 | cbvmow 2604 | . . . 4 ⊢ (∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} ↔ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) |
14 | 7, 13 | mpbir 230 | . . 3 ⊢ ∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} |
15 | 1, 14 | mpgbir 1805 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
16 | opabiota.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | |
17 | 16 | funeqi 6451 | . 2 ⊢ (Fun 𝐹 ↔ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}}) |
18 | 15, 17 | mpbir 230 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∃*wmo 2539 {cab 2716 {csn 4566 ∪ cuni 4844 {copab 5140 Fun wfun 6424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-fun 6432 |
This theorem is referenced by: opabiota 6845 |
Copyright terms: Public domain | W3C validator |