Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabiotafun | Structured version Visualization version GIF version |
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.) |
Ref | Expression |
---|---|
opabiota.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
Ref | Expression |
---|---|
opabiotafun | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 6374 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦 ∣ 𝜑} = {𝑦}) | |
2 | mo2icl 3613 | . . . . 5 ⊢ (∀𝑧({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) → ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) | |
3 | unieq 4807 | . . . . . 6 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → ∪ {𝑦 ∣ 𝜑} = ∪ {𝑧}) | |
4 | vex 3402 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
5 | 4 | unisn 4818 | . . . . . 6 ⊢ ∪ {𝑧} = 𝑧 |
6 | 3, 5 | eqtr2di 2790 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) |
7 | 2, 6 | mpg 1804 | . . . 4 ⊢ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧} |
8 | nfv 1921 | . . . . 5 ⊢ Ⅎ𝑧{𝑦 ∣ 𝜑} = {𝑦} | |
9 | nfab1 2901 | . . . . . 6 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
10 | 9 | nfeq1 2914 | . . . . 5 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} = {𝑧} |
11 | sneq 4526 | . . . . . 6 ⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) | |
12 | 11 | eqeq2d 2749 | . . . . 5 ⊢ (𝑦 = 𝑧 → ({𝑦 ∣ 𝜑} = {𝑦} ↔ {𝑦 ∣ 𝜑} = {𝑧})) |
13 | 8, 10, 12 | cbvmow 2604 | . . . 4 ⊢ (∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} ↔ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) |
14 | 7, 13 | mpbir 234 | . . 3 ⊢ ∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} |
15 | 1, 14 | mpgbir 1806 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
16 | opabiota.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | |
17 | 16 | funeqi 6360 | . 2 ⊢ (Fun 𝐹 ↔ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}}) |
18 | 15, 17 | mpbir 234 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∃*wmo 2538 {cab 2716 {csn 4516 ∪ cuni 4796 {copab 5092 Fun wfun 6333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-fun 6341 |
This theorem is referenced by: opabiota 6751 |
Copyright terms: Public domain | W3C validator |