|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > opabiotafun | Structured version Visualization version GIF version | ||
| Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.) | 
| Ref | Expression | 
|---|---|
| opabiota.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | 
| Ref | Expression | 
|---|---|
| opabiotafun | ⊢ Fun 𝐹 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funopab 6600 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦 ∣ 𝜑} = {𝑦}) | |
| 2 | mo2icl 3719 | . . . . 5 ⊢ (∀𝑧({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) → ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) | |
| 3 | unieq 4917 | . . . . . 6 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → ∪ {𝑦 ∣ 𝜑} = ∪ {𝑧}) | |
| 4 | unisnv 4926 | . . . . . 6 ⊢ ∪ {𝑧} = 𝑧 | |
| 5 | 3, 4 | eqtr2di 2793 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) | 
| 6 | 2, 5 | mpg 1796 | . . . 4 ⊢ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧} | 
| 7 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑧{𝑦 ∣ 𝜑} = {𝑦} | |
| 8 | nfab1 2906 | . . . . . 6 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
| 9 | 8 | nfeq1 2920 | . . . . 5 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} = {𝑧} | 
| 10 | sneq 4635 | . . . . . 6 ⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) | |
| 11 | 10 | eqeq2d 2747 | . . . . 5 ⊢ (𝑦 = 𝑧 → ({𝑦 ∣ 𝜑} = {𝑦} ↔ {𝑦 ∣ 𝜑} = {𝑧})) | 
| 12 | 7, 9, 11 | cbvmow 2602 | . . . 4 ⊢ (∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} ↔ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) | 
| 13 | 6, 12 | mpbir 231 | . . 3 ⊢ ∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} | 
| 14 | 1, 13 | mpgbir 1798 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | 
| 15 | opabiota.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | |
| 16 | 15 | funeqi 6586 | . 2 ⊢ (Fun 𝐹 ↔ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}}) | 
| 17 | 14, 16 | mpbir 231 | 1 ⊢ Fun 𝐹 | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∃*wmo 2537 {cab 2713 {csn 4625 ∪ cuni 4906 {copab 5204 Fun wfun 6554 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-fun 6562 | 
| This theorem is referenced by: opabiota 6990 | 
| Copyright terms: Public domain | W3C validator |