![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabiotafun | Structured version Visualization version GIF version |
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.) |
Ref | Expression |
---|---|
opabiota.1 | ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
Ref | Expression |
---|---|
opabiotafun | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 6583 | . . 3 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦 ∣ 𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦 ∣ 𝜑} = {𝑦}) | |
2 | mo2icl 3710 | . . . . 5 ⊢ (∀𝑧({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) → ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) | |
3 | unieq 4919 | . . . . . 6 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → ∪ {𝑦 ∣ 𝜑} = ∪ {𝑧}) | |
4 | unisnv 4931 | . . . . . 6 ⊢ ∪ {𝑧} = 𝑧 | |
5 | 3, 4 | eqtr2di 2789 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) |
6 | 2, 5 | mpg 1799 | . . . 4 ⊢ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧} |
7 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑧{𝑦 ∣ 𝜑} = {𝑦} | |
8 | nfab1 2905 | . . . . . 6 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
9 | 8 | nfeq1 2918 | . . . . 5 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} = {𝑧} |
10 | sneq 4638 | . . . . . 6 ⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) | |
11 | 10 | eqeq2d 2743 | . . . . 5 ⊢ (𝑦 = 𝑧 → ({𝑦 ∣ 𝜑} = {𝑦} ↔ {𝑦 ∣ 𝜑} = {𝑧})) |
12 | 7, 9, 11 | cbvmow 2597 | . . . 4 ⊢ (∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} ↔ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) |
13 | 6, 12 | mpbir 230 | . . 3 ⊢ ∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} |
14 | 1, 13 | mpgbir 1801 | . 2 ⊢ Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
15 | opabiota.1 | . . 3 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦 ∣ 𝜑} = {𝑦}} | |
16 | 15 | funeqi 6569 | . 2 ⊢ (Fun 𝐹 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦 ∣ 𝜑} = {𝑦}}) |
17 | 14, 16 | mpbir 230 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∃*wmo 2532 {cab 2709 {csn 4628 ∪ cuni 4908 {copab 5210 Fun wfun 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-fun 6545 |
This theorem is referenced by: opabiota 6974 |
Copyright terms: Public domain | W3C validator |