![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabiotafun | Structured version Visualization version GIF version |
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.) |
Ref | Expression |
---|---|
opabiota.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
Ref | Expression |
---|---|
opabiotafun | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 6573 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦 ∣ 𝜑} = {𝑦}) | |
2 | mo2icl 3702 | . . . . 5 ⊢ (∀𝑧({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) → ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) | |
3 | unieq 4910 | . . . . . 6 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → ∪ {𝑦 ∣ 𝜑} = ∪ {𝑧}) | |
4 | unisnv 4921 | . . . . . 6 ⊢ ∪ {𝑧} = 𝑧 | |
5 | 3, 4 | eqtr2di 2781 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} = {𝑧} → 𝑧 = ∪ {𝑦 ∣ 𝜑}) |
6 | 2, 5 | mpg 1791 | . . . 4 ⊢ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧} |
7 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑧{𝑦 ∣ 𝜑} = {𝑦} | |
8 | nfab1 2897 | . . . . . 6 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
9 | 8 | nfeq1 2910 | . . . . 5 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} = {𝑧} |
10 | sneq 4630 | . . . . . 6 ⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) | |
11 | 10 | eqeq2d 2735 | . . . . 5 ⊢ (𝑦 = 𝑧 → ({𝑦 ∣ 𝜑} = {𝑦} ↔ {𝑦 ∣ 𝜑} = {𝑧})) |
12 | 7, 9, 11 | cbvmow 2589 | . . . 4 ⊢ (∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} ↔ ∃*𝑧{𝑦 ∣ 𝜑} = {𝑧}) |
13 | 6, 12 | mpbir 230 | . . 3 ⊢ ∃*𝑦{𝑦 ∣ 𝜑} = {𝑦} |
14 | 1, 13 | mpgbir 1793 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
15 | opabiota.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | |
16 | 15 | funeqi 6559 | . 2 ⊢ (Fun 𝐹 ↔ Fun {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}}) |
17 | 14, 16 | mpbir 230 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∃*wmo 2524 {cab 2701 {csn 4620 ∪ cuni 4899 {copab 5200 Fun wfun 6527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-fun 6535 |
This theorem is referenced by: opabiota 6964 |
Copyright terms: Public domain | W3C validator |