MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiotafun Structured version   Visualization version   GIF version

Theorem opabiotafun 6988
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.)
Hypothesis
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
Assertion
Ref Expression
opabiotafun Fun 𝐹
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabiotafun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funopab 6600 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ ∀𝑥∃*𝑦{𝑦𝜑} = {𝑦})
2 mo2icl 3719 . . . . 5 (∀𝑧({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑}) → ∃*𝑧{𝑦𝜑} = {𝑧})
3 unieq 4917 . . . . . 6 ({𝑦𝜑} = {𝑧} → {𝑦𝜑} = {𝑧})
4 unisnv 4926 . . . . . 6 {𝑧} = 𝑧
53, 4eqtr2di 2793 . . . . 5 ({𝑦𝜑} = {𝑧} → 𝑧 = {𝑦𝜑})
62, 5mpg 1796 . . . 4 ∃*𝑧{𝑦𝜑} = {𝑧}
7 nfv 1913 . . . . 5 𝑧{𝑦𝜑} = {𝑦}
8 nfab1 2906 . . . . . 6 𝑦{𝑦𝜑}
98nfeq1 2920 . . . . 5 𝑦{𝑦𝜑} = {𝑧}
10 sneq 4635 . . . . . 6 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1110eqeq2d 2747 . . . . 5 (𝑦 = 𝑧 → ({𝑦𝜑} = {𝑦} ↔ {𝑦𝜑} = {𝑧}))
127, 9, 11cbvmow 2602 . . . 4 (∃*𝑦{𝑦𝜑} = {𝑦} ↔ ∃*𝑧{𝑦𝜑} = {𝑧})
136, 12mpbir 231 . . 3 ∃*𝑦{𝑦𝜑} = {𝑦}
141, 13mpgbir 1798 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
15 opabiota.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
1615funeqi 6586 . 2 (Fun 𝐹 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
1714, 16mpbir 231 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ∃*wmo 2537  {cab 2713  {csn 4625   cuni 4906  {copab 5204  Fun wfun 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-fun 6562
This theorem is referenced by:  opabiota  6990
  Copyright terms: Public domain W3C validator