MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiota Structured version   Visualization version   GIF version

Theorem opabiota 6851
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.)
Hypotheses
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
opabiota.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
opabiota (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem opabiota
StepHypRef Expression
1 fveq2 6774 . . 3 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2 opabiota.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
32iotabidv 6417 . . 3 (𝑥 = 𝐵 → (℩𝑦𝜑) = (℩𝑦𝜓))
41, 3eqeq12d 2754 . 2 (𝑥 = 𝐵 → ((𝐹𝑥) = (℩𝑦𝜑) ↔ (𝐹𝐵) = (℩𝑦𝜓)))
5 vex 3436 . . . 4 𝑥 ∈ V
65eldm 5809 . . 3 (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦)
7 nfiota1 6393 . . . . 5 𝑦(℩𝑦𝜑)
87nfeq2 2924 . . . 4 𝑦(𝐹𝑥) = (℩𝑦𝜑)
9 opabiota.1 . . . . . . 7 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
109opabiotafun 6849 . . . . . 6 Fun 𝐹
11 funbrfv 6820 . . . . . 6 (Fun 𝐹 → (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦))
1210, 11ax-mp 5 . . . . 5 (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦)
13 df-br 5075 . . . . . . . 8 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
149eleq2i 2830 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
15 opabidw 5437 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ {𝑦𝜑} = {𝑦})
1613, 14, 153bitri 297 . . . . . . 7 (𝑥𝐹𝑦 ↔ {𝑦𝜑} = {𝑦})
17 vsnid 4598 . . . . . . . . 9 𝑦 ∈ {𝑦}
18 id 22 . . . . . . . . 9 ({𝑦𝜑} = {𝑦} → {𝑦𝜑} = {𝑦})
1917, 18eleqtrrid 2846 . . . . . . . 8 ({𝑦𝜑} = {𝑦} → 𝑦 ∈ {𝑦𝜑})
20 abid 2719 . . . . . . . 8 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
2119, 20sylib 217 . . . . . . 7 ({𝑦𝜑} = {𝑦} → 𝜑)
2216, 21sylbi 216 . . . . . 6 (𝑥𝐹𝑦𝜑)
23 vex 3436 . . . . . . . . 9 𝑦 ∈ V
245, 23breldm 5817 . . . . . . . 8 (𝑥𝐹𝑦𝑥 ∈ dom 𝐹)
259opabiotadm 6850 . . . . . . . . 9 dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
2625abeq2i 2875 . . . . . . . 8 (𝑥 ∈ dom 𝐹 ↔ ∃!𝑦𝜑)
2724, 26sylib 217 . . . . . . 7 (𝑥𝐹𝑦 → ∃!𝑦𝜑)
28 iota1 6410 . . . . . . 7 (∃!𝑦𝜑 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
2927, 28syl 17 . . . . . 6 (𝑥𝐹𝑦 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
3022, 29mpbid 231 . . . . 5 (𝑥𝐹𝑦 → (℩𝑦𝜑) = 𝑦)
3112, 30eqtr4d 2781 . . . 4 (𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
328, 31exlimi 2210 . . 3 (∃𝑦 𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
336, 32sylbi 216 . 2 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) = (℩𝑦𝜑))
344, 33vtoclga 3513 1 (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  {cab 2715  {csn 4561  cop 4567   class class class wbr 5074  {copab 5136  dom cdm 5589  cio 6389  Fun wfun 6427  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator