Proof of Theorem opabiota
Step | Hyp | Ref
| Expression |
1 | | fveq2 6769 |
. . 3
⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) |
2 | | opabiota.2 |
. . . 4
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
3 | 2 | iotabidv 6415 |
. . 3
⊢ (𝑥 = 𝐵 → (℩𝑦𝜑) = (℩𝑦𝜓)) |
4 | 1, 3 | eqeq12d 2756 |
. 2
⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) = (℩𝑦𝜑) ↔ (𝐹‘𝐵) = (℩𝑦𝜓))) |
5 | | vex 3435 |
. . . 4
⊢ 𝑥 ∈ V |
6 | 5 | eldm 5807 |
. . 3
⊢ (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦) |
7 | | nfiota1 6391 |
. . . . 5
⊢
Ⅎ𝑦(℩𝑦𝜑) |
8 | 7 | nfeq2 2926 |
. . . 4
⊢
Ⅎ𝑦(𝐹‘𝑥) = (℩𝑦𝜑) |
9 | | opabiota.1 |
. . . . . . 7
⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
10 | 9 | opabiotafun 6844 |
. . . . . 6
⊢ Fun 𝐹 |
11 | | funbrfv 6815 |
. . . . . 6
⊢ (Fun
𝐹 → (𝑥𝐹𝑦 → (𝐹‘𝑥) = 𝑦)) |
12 | 10, 11 | ax-mp 5 |
. . . . 5
⊢ (𝑥𝐹𝑦 → (𝐹‘𝑥) = 𝑦) |
13 | | df-br 5080 |
. . . . . . . 8
⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) |
14 | 9 | eleq2i 2832 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}}) |
15 | | opabidw 5440 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} ↔ {𝑦 ∣ 𝜑} = {𝑦}) |
16 | 13, 14, 15 | 3bitri 297 |
. . . . . . 7
⊢ (𝑥𝐹𝑦 ↔ {𝑦 ∣ 𝜑} = {𝑦}) |
17 | | vsnid 4604 |
. . . . . . . . 9
⊢ 𝑦 ∈ {𝑦} |
18 | | id 22 |
. . . . . . . . 9
⊢ ({𝑦 ∣ 𝜑} = {𝑦} → {𝑦 ∣ 𝜑} = {𝑦}) |
19 | 17, 18 | eleqtrrid 2848 |
. . . . . . . 8
⊢ ({𝑦 ∣ 𝜑} = {𝑦} → 𝑦 ∈ {𝑦 ∣ 𝜑}) |
20 | | abid 2721 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) |
21 | 19, 20 | sylib 217 |
. . . . . . 7
⊢ ({𝑦 ∣ 𝜑} = {𝑦} → 𝜑) |
22 | 16, 21 | sylbi 216 |
. . . . . 6
⊢ (𝑥𝐹𝑦 → 𝜑) |
23 | | vex 3435 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
24 | 5, 23 | breldm 5815 |
. . . . . . . 8
⊢ (𝑥𝐹𝑦 → 𝑥 ∈ dom 𝐹) |
25 | 9 | opabiotadm 6845 |
. . . . . . . . 9
⊢ dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑} |
26 | 25 | abeq2i 2877 |
. . . . . . . 8
⊢ (𝑥 ∈ dom 𝐹 ↔ ∃!𝑦𝜑) |
27 | 24, 26 | sylib 217 |
. . . . . . 7
⊢ (𝑥𝐹𝑦 → ∃!𝑦𝜑) |
28 | | iota1 6408 |
. . . . . . 7
⊢
(∃!𝑦𝜑 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦)) |
29 | 27, 28 | syl 17 |
. . . . . 6
⊢ (𝑥𝐹𝑦 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦)) |
30 | 22, 29 | mpbid 231 |
. . . . 5
⊢ (𝑥𝐹𝑦 → (℩𝑦𝜑) = 𝑦) |
31 | 12, 30 | eqtr4d 2783 |
. . . 4
⊢ (𝑥𝐹𝑦 → (𝐹‘𝑥) = (℩𝑦𝜑)) |
32 | 8, 31 | exlimi 2214 |
. . 3
⊢
(∃𝑦 𝑥𝐹𝑦 → (𝐹‘𝑥) = (℩𝑦𝜑)) |
33 | 6, 32 | sylbi 216 |
. 2
⊢ (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) = (℩𝑦𝜑)) |
34 | 4, 33 | vtoclga 3512 |
1
⊢ (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = (℩𝑦𝜓)) |