MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiota Structured version   Visualization version   GIF version

Theorem opabiota 6991
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.)
Hypotheses
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
opabiota.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
opabiota (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem opabiota
StepHypRef Expression
1 fveq2 6907 . . 3 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2 opabiota.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
32iotabidv 6547 . . 3 (𝑥 = 𝐵 → (℩𝑦𝜑) = (℩𝑦𝜓))
41, 3eqeq12d 2751 . 2 (𝑥 = 𝐵 → ((𝐹𝑥) = (℩𝑦𝜑) ↔ (𝐹𝐵) = (℩𝑦𝜓)))
5 vex 3482 . . . 4 𝑥 ∈ V
65eldm 5914 . . 3 (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦)
7 nfiota1 6518 . . . . 5 𝑦(℩𝑦𝜑)
87nfeq2 2921 . . . 4 𝑦(𝐹𝑥) = (℩𝑦𝜑)
9 opabiota.1 . . . . . . 7 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
109opabiotafun 6989 . . . . . 6 Fun 𝐹
11 funbrfv 6958 . . . . . 6 (Fun 𝐹 → (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦))
1210, 11ax-mp 5 . . . . 5 (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦)
13 df-br 5149 . . . . . . . 8 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
149eleq2i 2831 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
15 opabidw 5534 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ {𝑦𝜑} = {𝑦})
1613, 14, 153bitri 297 . . . . . . 7 (𝑥𝐹𝑦 ↔ {𝑦𝜑} = {𝑦})
17 vsnid 4668 . . . . . . . . 9 𝑦 ∈ {𝑦}
18 id 22 . . . . . . . . 9 ({𝑦𝜑} = {𝑦} → {𝑦𝜑} = {𝑦})
1917, 18eleqtrrid 2846 . . . . . . . 8 ({𝑦𝜑} = {𝑦} → 𝑦 ∈ {𝑦𝜑})
20 abid 2716 . . . . . . . 8 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
2119, 20sylib 218 . . . . . . 7 ({𝑦𝜑} = {𝑦} → 𝜑)
2216, 21sylbi 217 . . . . . 6 (𝑥𝐹𝑦𝜑)
23 vex 3482 . . . . . . . . 9 𝑦 ∈ V
245, 23breldm 5922 . . . . . . . 8 (𝑥𝐹𝑦𝑥 ∈ dom 𝐹)
259opabiotadm 6990 . . . . . . . . 9 dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
2625eqabri 2883 . . . . . . . 8 (𝑥 ∈ dom 𝐹 ↔ ∃!𝑦𝜑)
2724, 26sylib 218 . . . . . . 7 (𝑥𝐹𝑦 → ∃!𝑦𝜑)
28 iota1 6540 . . . . . . 7 (∃!𝑦𝜑 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
2927, 28syl 17 . . . . . 6 (𝑥𝐹𝑦 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
3022, 29mpbid 232 . . . . 5 (𝑥𝐹𝑦 → (℩𝑦𝜑) = 𝑦)
3112, 30eqtr4d 2778 . . . 4 (𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
328, 31exlimi 2215 . . 3 (∃𝑦 𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
336, 32sylbi 217 . 2 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) = (℩𝑦𝜑))
344, 33vtoclga 3577 1 (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wex 1776  wcel 2106  ∃!weu 2566  {cab 2712  {csn 4631  cop 4637   class class class wbr 5148  {copab 5210  dom cdm 5689  cio 6514  Fun wfun 6557  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator