MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiota Structured version   Visualization version   GIF version

Theorem opabiota 6943
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.)
Hypotheses
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
opabiota.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
opabiota (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem opabiota
StepHypRef Expression
1 fveq2 6858 . . 3 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2 opabiota.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
32iotabidv 6495 . . 3 (𝑥 = 𝐵 → (℩𝑦𝜑) = (℩𝑦𝜓))
41, 3eqeq12d 2745 . 2 (𝑥 = 𝐵 → ((𝐹𝑥) = (℩𝑦𝜑) ↔ (𝐹𝐵) = (℩𝑦𝜓)))
5 vex 3451 . . . 4 𝑥 ∈ V
65eldm 5864 . . 3 (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦)
7 nfiota1 6466 . . . . 5 𝑦(℩𝑦𝜑)
87nfeq2 2909 . . . 4 𝑦(𝐹𝑥) = (℩𝑦𝜑)
9 opabiota.1 . . . . . . 7 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
109opabiotafun 6941 . . . . . 6 Fun 𝐹
11 funbrfv 6909 . . . . . 6 (Fun 𝐹 → (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦))
1210, 11ax-mp 5 . . . . 5 (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦)
13 df-br 5108 . . . . . . . 8 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
149eleq2i 2820 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
15 opabidw 5484 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ {𝑦𝜑} = {𝑦})
1613, 14, 153bitri 297 . . . . . . 7 (𝑥𝐹𝑦 ↔ {𝑦𝜑} = {𝑦})
17 vsnid 4627 . . . . . . . . 9 𝑦 ∈ {𝑦}
18 id 22 . . . . . . . . 9 ({𝑦𝜑} = {𝑦} → {𝑦𝜑} = {𝑦})
1917, 18eleqtrrid 2835 . . . . . . . 8 ({𝑦𝜑} = {𝑦} → 𝑦 ∈ {𝑦𝜑})
20 abid 2711 . . . . . . . 8 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
2119, 20sylib 218 . . . . . . 7 ({𝑦𝜑} = {𝑦} → 𝜑)
2216, 21sylbi 217 . . . . . 6 (𝑥𝐹𝑦𝜑)
23 vex 3451 . . . . . . . . 9 𝑦 ∈ V
245, 23breldm 5872 . . . . . . . 8 (𝑥𝐹𝑦𝑥 ∈ dom 𝐹)
259opabiotadm 6942 . . . . . . . . 9 dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
2625eqabri 2871 . . . . . . . 8 (𝑥 ∈ dom 𝐹 ↔ ∃!𝑦𝜑)
2724, 26sylib 218 . . . . . . 7 (𝑥𝐹𝑦 → ∃!𝑦𝜑)
28 iota1 6488 . . . . . . 7 (∃!𝑦𝜑 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
2927, 28syl 17 . . . . . 6 (𝑥𝐹𝑦 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
3022, 29mpbid 232 . . . . 5 (𝑥𝐹𝑦 → (℩𝑦𝜑) = 𝑦)
3112, 30eqtr4d 2767 . . . 4 (𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
328, 31exlimi 2218 . . 3 (∃𝑦 𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
336, 32sylbi 217 . 2 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) = (℩𝑦𝜑))
344, 33vtoclga 3543 1 (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  {cab 2707  {csn 4589  cop 4595   class class class wbr 5107  {copab 5169  dom cdm 5638  cio 6462  Fun wfun 6505  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator