| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgropssxp | Structured version Visualization version GIF version | ||
| Description: The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 48281. (Contributed by AV, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| uspgrsprf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
| uspgrsprf.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
| Ref | Expression |
|---|---|
| uspgropssxp | ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrsprf.g | . 2 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
| 2 | eleq1 2821 | . . . . . 6 ⊢ (𝑉 = 𝑣 → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) | |
| 3 | 2 | eqcoms 2741 | . . . . 5 ⊢ (𝑣 = 𝑉 → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) |
| 5 | 4 | biimpac 478 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑣 ∈ 𝑊) |
| 6 | uspgrupgr 29160 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph) | |
| 7 | upgredgssspr 48270 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) |
| 9 | 8 | 3ad2ant1 1133 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) |
| 10 | simp2l 1200 | . . . . . . . . . . . 12 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑣) | |
| 11 | simp3 1138 | . . . . . . . . . . . 12 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) | |
| 12 | 10, 11 | eqtrd 2768 | . . . . . . . . . . 11 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑉) |
| 13 | 12 | fveq2d 6834 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑉)) |
| 14 | 9, 13 | sseqtrd 3967 | . . . . . . . . 9 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘𝑉)) |
| 15 | fvex 6843 | . . . . . . . . . 10 ⊢ (Edg‘𝑞) ∈ V | |
| 16 | 15 | elpw 4555 | . . . . . . . . 9 ⊢ ((Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉) ↔ (Edg‘𝑞) ⊆ (Pairs‘𝑉)) |
| 17 | 14, 16 | sylibr 234 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉)) |
| 18 | simpr 484 | . . . . . . . . . 10 ⊢ (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒) | |
| 19 | 18 | eqcomd 2739 | . . . . . . . . 9 ⊢ (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 = (Edg‘𝑞)) |
| 20 | 19 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 = (Edg‘𝑞)) |
| 21 | uspgrsprf.p | . . . . . . . . 9 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
| 22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑃 = 𝒫 (Pairs‘𝑉)) |
| 23 | 17, 20, 22 | 3eltr4d 2848 | . . . . . . 7 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 ∈ 𝑃) |
| 24 | 23 | 3exp 1119 | . . . . . 6 ⊢ (𝑞 ∈ USPGraph → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉 → 𝑒 ∈ 𝑃))) |
| 25 | 24 | rexlimiv 3127 | . . . . 5 ⊢ (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉 → 𝑒 ∈ 𝑃)) |
| 26 | 25 | impcom 407 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ∈ 𝑃) |
| 27 | 26 | adantl 481 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒 ∈ 𝑃) |
| 28 | 5, 27 | opabssxpd 5668 | . 2 ⊢ (𝑉 ∈ 𝑊 → {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⊆ (𝑊 × 𝑃)) |
| 29 | 1, 28 | eqsstrid 3969 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 𝒫 cpw 4551 {copab 5157 × cxp 5619 ‘cfv 6488 Vtxcvtx 28978 Edgcedg 29029 UPGraphcupgr 29062 USPGraphcuspgr 29130 Pairscspr 47604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-oadd 8397 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-fz 13412 df-hash 14242 df-edg 29030 df-upgr 29064 df-uspgr 29132 df-spr 47605 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |