| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgropssxp | Structured version Visualization version GIF version | ||
| Description: The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 48016. (Contributed by AV, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| uspgrsprf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
| uspgrsprf.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
| Ref | Expression |
|---|---|
| uspgropssxp | ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrsprf.g | . 2 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
| 2 | eleq1 2821 | . . . . . 6 ⊢ (𝑉 = 𝑣 → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) | |
| 3 | 2 | eqcoms 2742 | . . . . 5 ⊢ (𝑣 = 𝑉 → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) |
| 5 | 4 | biimpac 478 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑣 ∈ 𝑊) |
| 6 | uspgrupgr 29142 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph) | |
| 7 | upgredgssspr 48005 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) |
| 9 | 8 | 3ad2ant1 1133 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) |
| 10 | simp2l 1199 | . . . . . . . . . . . 12 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑣) | |
| 11 | simp3 1138 | . . . . . . . . . . . 12 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) | |
| 12 | 10, 11 | eqtrd 2769 | . . . . . . . . . . 11 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑉) |
| 13 | 12 | fveq2d 6891 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑉)) |
| 14 | 9, 13 | sseqtrd 4002 | . . . . . . . . 9 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘𝑉)) |
| 15 | fvex 6900 | . . . . . . . . . 10 ⊢ (Edg‘𝑞) ∈ V | |
| 16 | 15 | elpw 4586 | . . . . . . . . 9 ⊢ ((Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉) ↔ (Edg‘𝑞) ⊆ (Pairs‘𝑉)) |
| 17 | 14, 16 | sylibr 234 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉)) |
| 18 | simpr 484 | . . . . . . . . . 10 ⊢ (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒) | |
| 19 | 18 | eqcomd 2740 | . . . . . . . . 9 ⊢ (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 = (Edg‘𝑞)) |
| 20 | 19 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 = (Edg‘𝑞)) |
| 21 | uspgrsprf.p | . . . . . . . . 9 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
| 22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑃 = 𝒫 (Pairs‘𝑉)) |
| 23 | 17, 20, 22 | 3eltr4d 2848 | . . . . . . 7 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 ∈ 𝑃) |
| 24 | 23 | 3exp 1119 | . . . . . 6 ⊢ (𝑞 ∈ USPGraph → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉 → 𝑒 ∈ 𝑃))) |
| 25 | 24 | rexlimiv 3135 | . . . . 5 ⊢ (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉 → 𝑒 ∈ 𝑃)) |
| 26 | 25 | impcom 407 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ∈ 𝑃) |
| 27 | 26 | adantl 481 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒 ∈ 𝑃) |
| 28 | 5, 27 | opabssxpd 5714 | . 2 ⊢ (𝑉 ∈ 𝑊 → {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⊆ (𝑊 × 𝑃)) |
| 29 | 1, 28 | eqsstrid 4004 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3933 𝒫 cpw 4582 {copab 5187 × cxp 5665 ‘cfv 6542 Vtxcvtx 28960 Edgcedg 29011 UPGraphcupgr 29044 USPGraphcuspgr 29112 Pairscspr 47410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-oadd 8493 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-xnn0 12584 df-z 12598 df-uz 12862 df-fz 13531 df-hash 14353 df-edg 29012 df-upgr 29046 df-uspgr 29114 df-spr 47411 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |