Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgropssxp | Structured version Visualization version GIF version |
Description: The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 45204. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
uspgrsprf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
uspgrsprf.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
Ref | Expression |
---|---|
uspgropssxp | ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrsprf.g | . 2 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
2 | eleq1 2826 | . . . . . 6 ⊢ (𝑉 = 𝑣 → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) | |
3 | 2 | eqcoms 2746 | . . . . 5 ⊢ (𝑣 = 𝑉 → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊)) |
5 | 4 | biimpac 478 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑣 ∈ 𝑊) |
6 | uspgrupgr 27449 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph) | |
7 | upgredgssspr 45193 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) | |
8 | 6, 7 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) |
9 | 8 | 3ad2ant1 1131 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞))) |
10 | simp2l 1197 | . . . . . . . . . . . 12 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑣) | |
11 | simp3 1136 | . . . . . . . . . . . 12 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) | |
12 | 10, 11 | eqtrd 2778 | . . . . . . . . . . 11 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑉) |
13 | 12 | fveq2d 6760 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑉)) |
14 | 9, 13 | sseqtrd 3957 | . . . . . . . . 9 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘𝑉)) |
15 | fvex 6769 | . . . . . . . . . 10 ⊢ (Edg‘𝑞) ∈ V | |
16 | 15 | elpw 4534 | . . . . . . . . 9 ⊢ ((Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉) ↔ (Edg‘𝑞) ⊆ (Pairs‘𝑉)) |
17 | 14, 16 | sylibr 233 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉)) |
18 | simpr 484 | . . . . . . . . . 10 ⊢ (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒) | |
19 | 18 | eqcomd 2744 | . . . . . . . . 9 ⊢ (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 = (Edg‘𝑞)) |
20 | 19 | 3ad2ant2 1132 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 = (Edg‘𝑞)) |
21 | uspgrsprf.p | . . . . . . . . 9 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑃 = 𝒫 (Pairs‘𝑉)) |
23 | 17, 20, 22 | 3eltr4d 2854 | . . . . . . 7 ⊢ ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 ∈ 𝑃) |
24 | 23 | 3exp 1117 | . . . . . 6 ⊢ (𝑞 ∈ USPGraph → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉 → 𝑒 ∈ 𝑃))) |
25 | 24 | rexlimiv 3208 | . . . . 5 ⊢ (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉 → 𝑒 ∈ 𝑃)) |
26 | 25 | impcom 407 | . . . 4 ⊢ ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ∈ 𝑃) |
27 | 26 | adantl 481 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒 ∈ 𝑃) |
28 | 5, 27 | opabssxpd 5625 | . 2 ⊢ (𝑉 ∈ 𝑊 → {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⊆ (𝑊 × 𝑃)) |
29 | 1, 28 | eqsstrid 3965 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 𝒫 cpw 4530 {copab 5132 × cxp 5578 ‘cfv 6418 Vtxcvtx 27269 Edgcedg 27320 UPGraphcupgr 27353 USPGraphcuspgr 27421 Pairscspr 44817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-edg 27321 df-upgr 27355 df-uspgr 27423 df-spr 44818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |