Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgropssxp Structured version   Visualization version   GIF version

Theorem uspgropssxp 45194
Description: The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 45204. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
Assertion
Ref Expression
uspgropssxp (𝑉𝑊𝐺 ⊆ (𝑊 × 𝑃))
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑒,𝑊,𝑣
Allowed substitution hints:   𝐺(𝑣,𝑒,𝑞)   𝑊(𝑞)

Proof of Theorem uspgropssxp
StepHypRef Expression
1 uspgrsprf.g . 2 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
2 eleq1 2826 . . . . . 6 (𝑉 = 𝑣 → (𝑉𝑊𝑣𝑊))
32eqcoms 2746 . . . . 5 (𝑣 = 𝑉 → (𝑉𝑊𝑣𝑊))
43adantr 480 . . . 4 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑉𝑊𝑣𝑊))
54biimpac 478 . . 3 ((𝑉𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑣𝑊)
6 uspgrupgr 27449 . . . . . . . . . . . 12 (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph)
7 upgredgssspr 45193 . . . . . . . . . . . 12 (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
86, 7syl 17 . . . . . . . . . . 11 (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
983ad2ant1 1131 . . . . . . . . . 10 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
10 simp2l 1197 . . . . . . . . . . . 12 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑣)
11 simp3 1136 . . . . . . . . . . . 12 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉)
1210, 11eqtrd 2778 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑉)
1312fveq2d 6760 . . . . . . . . . 10 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑉))
149, 13sseqtrd 3957 . . . . . . . . 9 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘𝑉))
15 fvex 6769 . . . . . . . . . 10 (Edg‘𝑞) ∈ V
1615elpw 4534 . . . . . . . . 9 ((Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉) ↔ (Edg‘𝑞) ⊆ (Pairs‘𝑉))
1714, 16sylibr 233 . . . . . . . 8 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉))
18 simpr 484 . . . . . . . . . 10 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒)
1918eqcomd 2744 . . . . . . . . 9 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 = (Edg‘𝑞))
20193ad2ant2 1132 . . . . . . . 8 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 = (Edg‘𝑞))
21 uspgrsprf.p . . . . . . . . 9 𝑃 = 𝒫 (Pairs‘𝑉)
2221a1i 11 . . . . . . . 8 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑃 = 𝒫 (Pairs‘𝑉))
2317, 20, 223eltr4d 2854 . . . . . . 7 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒𝑃)
24233exp 1117 . . . . . 6 (𝑞 ∈ USPGraph → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉𝑒𝑃)))
2524rexlimiv 3208 . . . . 5 (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉𝑒𝑃))
2625impcom 407 . . . 4 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒𝑃)
2726adantl 481 . . 3 ((𝑉𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒𝑃)
285, 27opabssxpd 5625 . 2 (𝑉𝑊 → {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⊆ (𝑊 × 𝑃))
291, 28eqsstrid 3965 1 (𝑉𝑊𝐺 ⊆ (𝑊 × 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883  𝒫 cpw 4530  {copab 5132   × cxp 5578  cfv 6418  Vtxcvtx 27269  Edgcedg 27320  UPGraphcupgr 27353  USPGraphcuspgr 27421  Pairscspr 44817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-upgr 27355  df-uspgr 27423  df-spr 44818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator