Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgropssxp Structured version   Visualization version   GIF version

Theorem uspgropssxp 47557
Description: The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 47567. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
Assertion
Ref Expression
uspgropssxp (𝑉𝑊𝐺 ⊆ (𝑊 × 𝑃))
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑒,𝑊,𝑣
Allowed substitution hints:   𝐺(𝑣,𝑒,𝑞)   𝑊(𝑞)

Proof of Theorem uspgropssxp
StepHypRef Expression
1 uspgrsprf.g . 2 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
2 eleq1 2814 . . . . . 6 (𝑉 = 𝑣 → (𝑉𝑊𝑣𝑊))
32eqcoms 2734 . . . . 5 (𝑣 = 𝑉 → (𝑉𝑊𝑣𝑊))
43adantr 479 . . . 4 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑉𝑊𝑣𝑊))
54biimpac 477 . . 3 ((𝑉𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑣𝑊)
6 uspgrupgr 29111 . . . . . . . . . . . 12 (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph)
7 upgredgssspr 47556 . . . . . . . . . . . 12 (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
86, 7syl 17 . . . . . . . . . . 11 (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
983ad2ant1 1130 . . . . . . . . . 10 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
10 simp2l 1196 . . . . . . . . . . . 12 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑣)
11 simp3 1135 . . . . . . . . . . . 12 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉)
1210, 11eqtrd 2766 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Vtx‘𝑞) = 𝑉)
1312fveq2d 6897 . . . . . . . . . 10 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑉))
149, 13sseqtrd 4019 . . . . . . . . 9 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ⊆ (Pairs‘𝑉))
15 fvex 6906 . . . . . . . . . 10 (Edg‘𝑞) ∈ V
1615elpw 4601 . . . . . . . . 9 ((Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉) ↔ (Edg‘𝑞) ⊆ (Pairs‘𝑉))
1714, 16sylibr 233 . . . . . . . 8 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → (Edg‘𝑞) ∈ 𝒫 (Pairs‘𝑉))
18 simpr 483 . . . . . . . . . 10 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒)
1918eqcomd 2732 . . . . . . . . 9 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 = (Edg‘𝑞))
20193ad2ant2 1131 . . . . . . . 8 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒 = (Edg‘𝑞))
21 uspgrsprf.p . . . . . . . . 9 𝑃 = 𝒫 (Pairs‘𝑉)
2221a1i 11 . . . . . . . 8 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑃 = 𝒫 (Pairs‘𝑉))
2317, 20, 223eltr4d 2841 . . . . . . 7 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ∧ 𝑣 = 𝑉) → 𝑒𝑃)
24233exp 1116 . . . . . 6 (𝑞 ∈ USPGraph → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉𝑒𝑃)))
2524rexlimiv 3138 . . . . 5 (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (𝑣 = 𝑉𝑒𝑃))
2625impcom 406 . . . 4 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒𝑃)
2726adantl 480 . . 3 ((𝑉𝑊 ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒𝑃)
285, 27opabssxpd 5721 . 2 (𝑉𝑊 → {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⊆ (𝑊 × 𝑃))
291, 28eqsstrid 4027 1 (𝑉𝑊𝐺 ⊆ (𝑊 × 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wrex 3060  wss 3946  𝒫 cpw 4597  {copab 5207   × cxp 5672  cfv 6546  Vtxcvtx 28929  Edgcedg 28980  UPGraphcupgr 29013  USPGraphcuspgr 29081  Pairscspr 47085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-dju 9937  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-n0 12519  df-xnn0 12591  df-z 12605  df-uz 12869  df-fz 13533  df-hash 14343  df-edg 28981  df-upgr 29015  df-uspgr 29083  df-spr 47086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator