Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2210. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1935 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1935 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 |
This theorem depends on definitions: df-bi 210 df-ex 1783 |
This theorem is referenced by: euotd 5373 opabssxpd 5761 funopg 6370 fmptsnd 6923 tpres 6955 opreuopreu 7739 fundmen 8603 undom 8627 infxpenc2 9483 zorn2lem6 9962 fpwwe2lem11 10102 genpnnp 10466 addsrmo 10534 mulsrmo 10535 hashfun 13849 hash2exprb 13882 rtrclreclem3 14468 summo 15123 fsum2dlem 15174 ntrivcvgmul 15307 prodmo 15339 fprod2dlem 15383 iscatd2 17011 gsumval3eu 19093 gsum2d2 19163 ptbasin 22278 txcls 22305 txbasval 22307 reconn 23530 phtpcer 23697 pcohtpy 23722 mbfi1flimlem 24423 mbfmullem 24426 itg2add 24460 fsumvma 25897 umgr3v3e3cycl 28069 conngrv2edg 28080 2ndresdju 30510 cusgracyclt3v 32635 pconnconn 32710 txsconn 32720 dfpo2 33239 frxp2 33347 frxp3 33353 neibastop1 34098 itg2addnc 35392 riscer 35707 dalem62 37311 pellexlem5 40148 pellex 40150 iunrelexpuztr 40794 fzisoeu 42301 stoweidlem53 43062 stoweidlem56 43065 fundcmpsurinjpreimafv 44294 ichnreuop 44358 |
Copyright terms: Public domain | W3C validator |