![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2205. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1937 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1937 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: euotd 5514 opabssxpd 5724 dfpo2 6296 funopg 6583 fmptsnd 7167 tpres 7202 opreuopreu 8020 frxp2 8130 frxp3 8137 fundmen 9031 undomOLD 9060 ttrcltr 9711 infxpenc2 10017 zorn2lem6 10496 fpwwe2lem11 10636 genpnnp 11000 addsrmo 11068 mulsrmo 11069 hashfun 14397 hash2exprb 14432 rtrclreclem3 15007 summo 15663 fsum2dlem 15716 ntrivcvgmul 15848 prodmo 15880 fprod2dlem 15924 iscatd2 17625 gsumval3eu 19772 gsum2d2 19842 ptbasin 23081 txcls 23108 txbasval 23110 reconn 24344 phtpcer 24511 pcohtpy 24536 mbfi1flimlem 25240 mbfmullem 25243 itg2add 25277 fsumvma 26716 umgr3v3e3cycl 29437 conngrv2edg 29448 2ndresdju 31874 cusgracyclt3v 34147 pconnconn 34222 txsconn 34232 neibastop1 35244 itg2addnc 36542 riscer 36856 dalem62 38605 pellexlem5 41571 pellex 41573 nnoeomeqom 42062 iunrelexpuztr 42470 fzisoeu 44010 stoweidlem53 44769 stoweidlem56 44772 fundcmpsurinjpreimafv 46076 ichnreuop 46140 |
Copyright terms: Public domain | W3C validator |