![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2204. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1936 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1936 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1782 |
This theorem is referenced by: euotd 5513 opabssxpd 5723 dfpo2 6295 funopg 6582 fmptsnd 7169 tpres 7204 opreuopreu 8022 frxp2 8132 frxp3 8139 fundmen 9033 undomOLD 9062 ttrcltr 9713 infxpenc2 10019 zorn2lem6 10498 fpwwe2lem11 10638 genpnnp 11002 addsrmo 11070 mulsrmo 11071 hashfun 14399 hash2exprb 14434 rtrclreclem3 15009 summo 15665 fsum2dlem 15718 ntrivcvgmul 15850 prodmo 15882 fprod2dlem 15926 iscatd2 17627 gsumval3eu 19774 gsum2d2 19844 ptbasin 23088 txcls 23115 txbasval 23117 reconn 24351 phtpcer 24518 pcohtpy 24543 mbfi1flimlem 25247 mbfmullem 25250 itg2add 25284 fsumvma 26723 umgr3v3e3cycl 29475 conngrv2edg 29486 2ndresdju 31912 cusgracyclt3v 34216 pconnconn 34291 txsconn 34301 neibastop1 35330 itg2addnc 36628 riscer 36942 dalem62 38691 pellexlem5 41653 pellex 41655 nnoeomeqom 42144 iunrelexpuztr 42552 fzisoeu 44089 stoweidlem53 44848 stoweidlem56 44851 fundcmpsurinjpreimafv 46155 ichnreuop 46219 |
Copyright terms: Public domain | W3C validator |