Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2207. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1937 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1937 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: euotd 5421 opabssxpd 5625 dfpo2 6188 funopg 6452 fmptsnd 7023 tpres 7058 opreuopreu 7849 fundmen 8775 undom 8800 infxpenc2 9709 zorn2lem6 10188 fpwwe2lem11 10328 genpnnp 10692 addsrmo 10760 mulsrmo 10761 hashfun 14080 hash2exprb 14113 rtrclreclem3 14699 summo 15357 fsum2dlem 15410 ntrivcvgmul 15542 prodmo 15574 fprod2dlem 15618 iscatd2 17307 gsumval3eu 19420 gsum2d2 19490 ptbasin 22636 txcls 22663 txbasval 22665 reconn 23897 phtpcer 24064 pcohtpy 24089 mbfi1flimlem 24792 mbfmullem 24795 itg2add 24829 fsumvma 26266 umgr3v3e3cycl 28449 conngrv2edg 28460 2ndresdju 30887 cusgracyclt3v 33018 pconnconn 33093 txsconn 33103 ttrcltr 33702 frxp2 33718 frxp3 33724 neibastop1 34475 itg2addnc 35758 riscer 36073 dalem62 37675 pellexlem5 40571 pellex 40573 iunrelexpuztr 41216 fzisoeu 42729 stoweidlem53 43484 stoweidlem56 43487 fundcmpsurinjpreimafv 44748 ichnreuop 44812 |
Copyright terms: Public domain | W3C validator |