Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2204. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1936 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1936 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: euotd 5427 opabssxpd 5634 dfpo2 6199 funopg 6468 fmptsnd 7041 tpres 7076 opreuopreu 7876 fundmen 8821 undomOLD 8847 ttrcltr 9474 infxpenc2 9778 zorn2lem6 10257 fpwwe2lem11 10397 genpnnp 10761 addsrmo 10829 mulsrmo 10830 hashfun 14152 hash2exprb 14185 rtrclreclem3 14771 summo 15429 fsum2dlem 15482 ntrivcvgmul 15614 prodmo 15646 fprod2dlem 15690 iscatd2 17390 gsumval3eu 19505 gsum2d2 19575 ptbasin 22728 txcls 22755 txbasval 22757 reconn 23991 phtpcer 24158 pcohtpy 24183 mbfi1flimlem 24887 mbfmullem 24890 itg2add 24924 fsumvma 26361 umgr3v3e3cycl 28548 conngrv2edg 28559 2ndresdju 30986 cusgracyclt3v 33118 pconnconn 33193 txsconn 33203 frxp2 33791 frxp3 33797 neibastop1 34548 itg2addnc 35831 riscer 36146 dalem62 37748 pellexlem5 40655 pellex 40657 iunrelexpuztr 41327 fzisoeu 42839 stoweidlem53 43594 stoweidlem56 43597 fundcmpsurinjpreimafv 44860 ichnreuop 44924 |
Copyright terms: Public domain | W3C validator |