![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2175. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1912 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1912 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 |
This theorem depends on definitions: df-bi 208 df-ex 1763 |
This theorem is referenced by: euotd 5297 opabssxpd 5678 funopg 6262 fmptsnd 6797 tpres 6833 opreuopreu 7593 fundmen 8434 undom 8455 infxpenc2 9297 zorn2lem6 9772 fpwwe2lem12 9912 genpnnp 10276 addsrmo 10344 mulsrmo 10345 hashfun 13646 hash2exprb 13675 rtrclreclem3 14253 summo 14907 fsum2dlem 14958 ntrivcvgmul 15091 prodmo 15123 fprod2dlem 15167 iscatd2 16781 gsumval3eu 18745 gsum2d2 18814 ptbasin 21869 txcls 21896 txbasval 21898 reconn 23119 phtpcer 23282 pcohtpy 23307 mbfi1flimlem 24006 mbfmullem 24009 itg2add 24043 fsumvma 25471 umgr3v3e3cycl 27645 conngrv2edg 27656 cusgracyclt3v 32005 pconnconn 32080 txsconn 32090 dfpo2 32593 neibastop1 33310 itg2addnc 34490 riscer 34811 dalem62 36414 pellexlem5 38928 pellex 38930 iunrelexpuztr 39562 fzisoeu 41121 stoweidlem53 41894 stoweidlem56 41897 ichnreuop 43130 |
Copyright terms: Public domain | W3C validator |