MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimdvv Structured version   Visualization version   GIF version

Theorem exlimdvv 1913
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2175. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdvv (𝜑 → (∃𝑥𝑦𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜒,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (𝜑 → (𝜓𝜒))
21exlimdv 1912 . 2 (𝜑 → (∃𝑦𝜓𝜒))
32exlimdv 1912 1 (𝜑 → (∃𝑥𝑦𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889
This theorem depends on definitions:  df-bi 208  df-ex 1763
This theorem is referenced by:  euotd  5297  opabssxpd  5678  funopg  6262  fmptsnd  6797  tpres  6833  opreuopreu  7593  fundmen  8434  undom  8455  infxpenc2  9297  zorn2lem6  9772  fpwwe2lem12  9912  genpnnp  10276  addsrmo  10344  mulsrmo  10345  hashfun  13646  hash2exprb  13675  rtrclreclem3  14253  summo  14907  fsum2dlem  14958  ntrivcvgmul  15091  prodmo  15123  fprod2dlem  15167  iscatd2  16781  gsumval3eu  18745  gsum2d2  18814  ptbasin  21869  txcls  21896  txbasval  21898  reconn  23119  phtpcer  23282  pcohtpy  23307  mbfi1flimlem  24006  mbfmullem  24009  itg2add  24043  fsumvma  25471  umgr3v3e3cycl  27645  conngrv2edg  27656  cusgracyclt3v  32005  pconnconn  32080  txsconn  32090  dfpo2  32593  neibastop1  33310  itg2addnc  34490  riscer  34811  dalem62  36414  pellexlem5  38928  pellex  38930  iunrelexpuztr  39562  fzisoeu  41121  stoweidlem53  41894  stoweidlem56  41897  ichnreuop  43130
  Copyright terms: Public domain W3C validator