| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1933 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1933 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: euotd 5460 opabssxpd 5670 dfpo2 6248 funopg 6520 fmptsnd 7109 tpres 7141 opreuopreu 7976 frxp2 8084 frxp3 8091 fundmen 8963 ttrcltr 9631 infxpenc2 9935 zorn2lem6 10414 fpwwe2lem11 10554 genpnnp 10918 addsrmo 10986 mulsrmo 10987 hashfun 14362 hash2exprb 14396 hash3tpexb 14419 rtrclreclem3 14985 summo 15642 fsum2dlem 15695 ntrivcvgmul 15827 prodmo 15861 fprod2dlem 15905 iscatd2 17605 gsumval3eu 19801 gsum2d2 19871 ptbasin 23480 txcls 23507 txbasval 23509 reconn 24733 phtpcer 24910 pcohtpy 24936 mbfi1flimlem 25639 mbfmullem 25642 itg2add 25676 fsumvma 27140 umgr3v3e3cycl 30146 conngrv2edg 30157 brab2d 32568 2ndresdju 32606 cusgracyclt3v 35128 pconnconn 35203 txsconn 35213 neibastop1 36332 itg2addnc 37653 riscer 37967 dalem62 39713 pellexlem5 42806 pellex 42808 nnoeomeqom 43285 iunrelexpuztr 43692 fzisoeu 45282 stoweidlem53 46035 stoweidlem56 46038 fundcmpsurinjpreimafv 47393 ichnreuop 47457 cycldlenngric 47913 brab2dd 48813 |
| Copyright terms: Public domain | W3C validator |