![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1932 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1932 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: euotd 5532 opabssxpd 5747 dfpo2 6327 funopg 6612 fmptsnd 7203 tpres 7238 opreuopreu 8075 frxp2 8185 frxp3 8192 fundmen 9096 undomOLD 9126 ttrcltr 9785 infxpenc2 10091 zorn2lem6 10570 fpwwe2lem11 10710 genpnnp 11074 addsrmo 11142 mulsrmo 11143 hashfun 14486 hash2exprb 14520 hash3tpexb 14543 rtrclreclem3 15109 summo 15765 fsum2dlem 15818 ntrivcvgmul 15950 prodmo 15984 fprod2dlem 16028 iscatd2 17739 gsumval3eu 19946 gsum2d2 20016 ptbasin 23606 txcls 23633 txbasval 23635 reconn 24869 phtpcer 25046 pcohtpy 25072 mbfi1flimlem 25777 mbfmullem 25780 itg2add 25814 fsumvma 27275 umgr3v3e3cycl 30216 conngrv2edg 30227 brab2d 32629 2ndresdju 32667 cusgracyclt3v 35124 pconnconn 35199 txsconn 35209 neibastop1 36325 itg2addnc 37634 riscer 37948 dalem62 39691 pellexlem5 42789 pellex 42791 nnoeomeqom 43274 iunrelexpuztr 43681 fzisoeu 45215 stoweidlem53 45974 stoweidlem56 45977 fundcmpsurinjpreimafv 47282 ichnreuop 47346 |
Copyright terms: Public domain | W3C validator |