![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2208. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1930 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1930 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-ex 1776 |
This theorem is referenced by: euotd 5522 opabssxpd 5735 dfpo2 6317 funopg 6601 fmptsnd 7188 tpres 7220 opreuopreu 8057 frxp2 8167 frxp3 8174 fundmen 9069 undomOLD 9098 ttrcltr 9753 infxpenc2 10059 zorn2lem6 10538 fpwwe2lem11 10678 genpnnp 11042 addsrmo 11110 mulsrmo 11111 hashfun 14472 hash2exprb 14506 hash3tpexb 14529 rtrclreclem3 15095 summo 15749 fsum2dlem 15802 ntrivcvgmul 15934 prodmo 15968 fprod2dlem 16012 iscatd2 17725 gsumval3eu 19936 gsum2d2 20006 ptbasin 23600 txcls 23627 txbasval 23629 reconn 24863 phtpcer 25040 pcohtpy 25066 mbfi1flimlem 25771 mbfmullem 25774 itg2add 25808 fsumvma 27271 umgr3v3e3cycl 30212 conngrv2edg 30223 brab2d 32626 2ndresdju 32665 cusgracyclt3v 35140 pconnconn 35215 txsconn 35225 neibastop1 36341 itg2addnc 37660 riscer 37974 dalem62 39716 pellexlem5 42820 pellex 42822 nnoeomeqom 43301 iunrelexpuztr 43708 fzisoeu 45250 stoweidlem53 46008 stoweidlem56 46011 fundcmpsurinjpreimafv 47332 ichnreuop 47396 |
Copyright terms: Public domain | W3C validator |