| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2211. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1933 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1933 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: euotd 5488 opabssxpd 5701 dfpo2 6285 funopg 6570 fmptsnd 7161 tpres 7193 opreuopreu 8033 frxp2 8143 frxp3 8150 fundmen 9045 undomOLD 9074 ttrcltr 9730 infxpenc2 10036 zorn2lem6 10515 fpwwe2lem11 10655 genpnnp 11019 addsrmo 11087 mulsrmo 11088 hashfun 14455 hash2exprb 14489 hash3tpexb 14512 rtrclreclem3 15079 summo 15733 fsum2dlem 15786 ntrivcvgmul 15918 prodmo 15952 fprod2dlem 15996 iscatd2 17693 gsumval3eu 19885 gsum2d2 19955 ptbasin 23515 txcls 23542 txbasval 23544 reconn 24768 phtpcer 24945 pcohtpy 24971 mbfi1flimlem 25675 mbfmullem 25678 itg2add 25712 fsumvma 27176 umgr3v3e3cycl 30165 conngrv2edg 30176 brab2d 32587 2ndresdju 32627 cusgracyclt3v 35178 pconnconn 35253 txsconn 35263 neibastop1 36377 itg2addnc 37698 riscer 38012 dalem62 39753 pellexlem5 42856 pellex 42858 nnoeomeqom 43336 iunrelexpuztr 43743 fzisoeu 45329 stoweidlem53 46082 stoweidlem56 46085 fundcmpsurinjpreimafv 47422 ichnreuop 47486 cycldlenngric 47941 brab2dd 48806 |
| Copyright terms: Public domain | W3C validator |