| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1933 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1933 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: euotd 5473 opabssxpd 5685 dfpo2 6269 funopg 6550 fmptsnd 7143 tpres 7175 opreuopreu 8013 frxp2 8123 frxp3 8130 fundmen 9002 ttrcltr 9669 infxpenc2 9975 zorn2lem6 10454 fpwwe2lem11 10594 genpnnp 10958 addsrmo 11026 mulsrmo 11027 hashfun 14402 hash2exprb 14436 hash3tpexb 14459 rtrclreclem3 15026 summo 15683 fsum2dlem 15736 ntrivcvgmul 15868 prodmo 15902 fprod2dlem 15946 iscatd2 17642 gsumval3eu 19834 gsum2d2 19904 ptbasin 23464 txcls 23491 txbasval 23493 reconn 24717 phtpcer 24894 pcohtpy 24920 mbfi1flimlem 25623 mbfmullem 25626 itg2add 25660 fsumvma 27124 umgr3v3e3cycl 30113 conngrv2edg 30124 brab2d 32535 2ndresdju 32573 cusgracyclt3v 35143 pconnconn 35218 txsconn 35228 neibastop1 36347 itg2addnc 37668 riscer 37982 dalem62 39728 pellexlem5 42821 pellex 42823 nnoeomeqom 43301 iunrelexpuztr 43708 fzisoeu 45298 stoweidlem53 46051 stoweidlem56 46054 fundcmpsurinjpreimafv 47409 ichnreuop 47473 cycldlenngric 47928 brab2dd 48816 |
| Copyright terms: Public domain | W3C validator |