| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2214. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1934 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1934 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: euotd 5453 opabssxpd 5663 dfpo2 6243 funopg 6515 fmptsnd 7103 tpres 7135 opreuopreu 7966 frxp2 8074 frxp3 8081 fundmen 8953 ttrcltr 9606 infxpenc2 9910 zorn2lem6 10389 fpwwe2lem11 10529 genpnnp 10893 addsrmo 10961 mulsrmo 10962 hashfun 14341 hash2exprb 14375 hash3tpexb 14398 rtrclreclem3 14964 summo 15621 fsum2dlem 15674 ntrivcvgmul 15806 prodmo 15840 fprod2dlem 15884 iscatd2 17584 gsumval3eu 19814 gsum2d2 19884 ptbasin 23490 txcls 23517 txbasval 23519 reconn 24742 phtpcer 24919 pcohtpy 24945 mbfi1flimlem 25648 mbfmullem 25651 itg2add 25685 fsumvma 27149 umgr3v3e3cycl 30159 conngrv2edg 30170 brab2d 32583 2ndresdju 32626 cusgracyclt3v 35188 pconnconn 35263 txsconn 35273 neibastop1 36392 itg2addnc 37713 riscer 38027 dalem62 39772 pellexlem5 42865 pellex 42867 nnoeomeqom 43344 iunrelexpuztr 43751 fzisoeu 45340 stoweidlem53 46090 stoweidlem56 46093 fundcmpsurinjpreimafv 47438 ichnreuop 47502 cycldlenngric 47958 brab2dd 48858 |
| Copyright terms: Public domain | W3C validator |