| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2216. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1934 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1934 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: euotd 5456 opabssxpd 5666 dfpo2 6248 funopg 6520 fmptsnd 7109 tpres 7141 opreuopreu 7972 frxp2 8080 frxp3 8087 fundmen 8960 ttrcltr 9613 infxpenc2 9920 zorn2lem6 10399 fpwwe2lem11 10539 genpnnp 10903 addsrmo 10971 mulsrmo 10972 hashfun 14346 hash2exprb 14380 hash3tpexb 14403 rtrclreclem3 14969 summo 15626 fsum2dlem 15679 ntrivcvgmul 15811 prodmo 15845 fprod2dlem 15889 iscatd2 17589 gsumval3eu 19818 gsum2d2 19888 ptbasin 23493 txcls 23520 txbasval 23522 reconn 24745 phtpcer 24922 pcohtpy 24948 mbfi1flimlem 25651 mbfmullem 25654 itg2add 25688 fsumvma 27152 umgr3v3e3cycl 30166 conngrv2edg 30177 brab2d 32590 2ndresdju 32633 cusgracyclt3v 35221 pconnconn 35296 txsconn 35306 neibastop1 36424 itg2addnc 37734 riscer 38048 dalem62 39853 pellexlem5 42950 pellex 42952 nnoeomeqom 43429 iunrelexpuztr 43836 fzisoeu 45425 stoweidlem53 46175 stoweidlem56 46178 fundcmpsurinjpreimafv 47532 ichnreuop 47596 cycldlenngric 48052 brab2dd 48952 |
| Copyright terms: Public domain | W3C validator |