| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1933 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1933 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: euotd 5476 opabssxpd 5688 dfpo2 6272 funopg 6553 fmptsnd 7146 tpres 7178 opreuopreu 8016 frxp2 8126 frxp3 8133 fundmen 9005 undomOLD 9034 ttrcltr 9676 infxpenc2 9982 zorn2lem6 10461 fpwwe2lem11 10601 genpnnp 10965 addsrmo 11033 mulsrmo 11034 hashfun 14409 hash2exprb 14443 hash3tpexb 14466 rtrclreclem3 15033 summo 15690 fsum2dlem 15743 ntrivcvgmul 15875 prodmo 15909 fprod2dlem 15953 iscatd2 17649 gsumval3eu 19841 gsum2d2 19911 ptbasin 23471 txcls 23498 txbasval 23500 reconn 24724 phtpcer 24901 pcohtpy 24927 mbfi1flimlem 25630 mbfmullem 25633 itg2add 25667 fsumvma 27131 umgr3v3e3cycl 30120 conngrv2edg 30131 brab2d 32542 2ndresdju 32580 cusgracyclt3v 35150 pconnconn 35225 txsconn 35235 neibastop1 36354 itg2addnc 37675 riscer 37989 dalem62 39735 pellexlem5 42828 pellex 42830 nnoeomeqom 43308 iunrelexpuztr 43715 fzisoeu 45305 stoweidlem53 46058 stoweidlem56 46061 fundcmpsurinjpreimafv 47413 ichnreuop 47477 cycldlenngric 47932 brab2dd 48820 |
| Copyright terms: Public domain | W3C validator |