| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabex2 | Structured version Visualization version GIF version | ||
| Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| opabex2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| opabex2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| opabex2.3 | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
| opabex2.4 | ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| opabex2 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabex2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | opabex2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | 1, 2 | xpexd 7730 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 4 | opabex2.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
| 5 | opabex2.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) | |
| 6 | 4, 5 | opabssxpd 5688 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
| 7 | 3, 6 | ssexd 5282 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 {copab 5172 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: tgjustf 28407 legval 28518 wksvOLD 29555 mgcoval 32919 satf00 35368 bj-imdirval2lem 37177 rfovcnvfvd 44003 sprsymrelfvlem 47495 |
| Copyright terms: Public domain | W3C validator |