MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex2 Structured version   Visualization version   GIF version

Theorem opabex2 7970
Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.)
Hypotheses
Ref Expression
opabex2.1 (𝜑𝐴𝑉)
opabex2.2 (𝜑𝐵𝑊)
opabex2.3 ((𝜑𝜓) → 𝑥𝐴)
opabex2.4 ((𝜑𝜓) → 𝑦𝐵)
Assertion
Ref Expression
opabex2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabex2
StepHypRef Expression
1 opabex2.1 . . 3 (𝜑𝐴𝑉)
2 opabex2.2 . . 3 (𝜑𝐵𝑊)
31, 2xpexd 7668 . 2 (𝜑 → (𝐴 × 𝐵) ∈ V)
4 opabex2.3 . . 3 ((𝜑𝜓) → 𝑥𝐴)
5 opabex2.4 . . 3 ((𝜑𝜓) → 𝑦𝐵)
64, 5opabssxpd 5670 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵))
73, 6ssexd 5273 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2106  Vcvv 3442  {copab 5159   × cxp 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-opab 5160  df-xp 5631  df-rel 5632
This theorem is referenced by:  tgjustf  27123  legval  27234  wksvOLD  28276  mgcoval  31549  satf00  33633  bj-imdirval2lem  35507  rfovcnvfvd  41986  sprsymrelfvlem  45358
  Copyright terms: Public domain W3C validator