MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex2 Structured version   Visualization version   GIF version

Theorem opabex2 8039
Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.)
Hypotheses
Ref Expression
opabex2.1 (𝜑𝐴𝑉)
opabex2.2 (𝜑𝐵𝑊)
opabex2.3 ((𝜑𝜓) → 𝑥𝐴)
opabex2.4 ((𝜑𝜓) → 𝑦𝐵)
Assertion
Ref Expression
opabex2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabex2
StepHypRef Expression
1 opabex2.1 . . 3 (𝜑𝐴𝑉)
2 opabex2.2 . . 3 (𝜑𝐵𝑊)
31, 2xpexd 7730 . 2 (𝜑 → (𝐴 × 𝐵) ∈ V)
4 opabex2.3 . . 3 ((𝜑𝜓) → 𝑥𝐴)
5 opabex2.4 . . 3 ((𝜑𝜓) → 𝑦𝐵)
64, 5opabssxpd 5688 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵))
73, 6ssexd 5282 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3450  {copab 5172   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by:  tgjustf  28407  legval  28518  wksvOLD  29555  mgcoval  32919  satf00  35368  bj-imdirval2lem  37177  rfovcnvfvd  44003  sprsymrelfvlem  47495
  Copyright terms: Public domain W3C validator