MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex2 Structured version   Visualization version   GIF version

Theorem opabex2 7984
Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.)
Hypotheses
Ref Expression
opabex2.1 (𝜑𝐴𝑉)
opabex2.2 (𝜑𝐵𝑊)
opabex2.3 ((𝜑𝜓) → 𝑥𝐴)
opabex2.4 ((𝜑𝜓) → 𝑦𝐵)
Assertion
Ref Expression
opabex2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabex2
StepHypRef Expression
1 opabex2.1 . . 3 (𝜑𝐴𝑉)
2 opabex2.2 . . 3 (𝜑𝐵𝑊)
31, 2xpexd 7679 . 2 (𝜑 → (𝐴 × 𝐵) ∈ V)
4 opabex2.3 . . 3 ((𝜑𝜓) → 𝑥𝐴)
5 opabex2.4 . . 3 ((𝜑𝜓) → 𝑦𝐵)
64, 5opabssxpd 5658 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵))
73, 6ssexd 5257 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436  {copab 5148   × cxp 5609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-opab 5149  df-xp 5617  df-rel 5618
This theorem is referenced by:  tgjustf  28446  legval  28557  mgcoval  32959  satf00  35410  bj-imdirval2lem  37216  rfovcnvfvd  44040  sprsymrelfvlem  47521
  Copyright terms: Public domain W3C validator