Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabex2 | Structured version Visualization version GIF version |
Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
Ref | Expression |
---|---|
opabex2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opabex2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
opabex2.3 | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
opabex2.4 | ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
Ref | Expression |
---|---|
opabex2 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabex2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | opabex2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | 1, 2 | xpexd 7668 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
4 | opabex2.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
5 | opabex2.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) | |
6 | 4, 5 | opabssxpd 5670 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
7 | 3, 6 | ssexd 5273 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 Vcvv 3442 {copab 5159 × cxp 5623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-opab 5160 df-xp 5631 df-rel 5632 |
This theorem is referenced by: tgjustf 27123 legval 27234 wksvOLD 28276 mgcoval 31549 satf00 33633 bj-imdirval2lem 35507 rfovcnvfvd 41986 sprsymrelfvlem 45358 |
Copyright terms: Public domain | W3C validator |