![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabex2 | Structured version Visualization version GIF version |
Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
Ref | Expression |
---|---|
opabex2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opabex2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
opabex2.3 | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
opabex2.4 | ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
Ref | Expression |
---|---|
opabex2 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabex2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | opabex2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | 1, 2 | xpexd 7786 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
4 | opabex2.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
5 | opabex2.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) | |
6 | 4, 5 | opabssxpd 5747 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
7 | 3, 6 | ssexd 5342 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 {copab 5228 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: tgjustf 28499 legval 28610 wksvOLD 29656 mgcoval 32959 satf00 35342 bj-imdirval2lem 37148 rfovcnvfvd 43969 sprsymrelfvlem 47364 |
Copyright terms: Public domain | W3C validator |