![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opexmid | Structured version Visualization version GIF version |
Description: Law of excluded middle for orthoposets. (chjo 31557 analog.) (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
opexmid.b | ⊢ 𝐵 = (Base‘𝐾) |
opexmid.o | ⊢ ⊥ = (oc‘𝐾) |
opexmid.j | ⊢ ∨ = (join‘𝐾) |
opexmid.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
opexmid | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opexmid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2736 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opexmid.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
4 | opexmid.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | eqid 2736 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
6 | eqid 2736 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
7 | opexmid.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39176 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
9 | 8 | 3anidm23 1421 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
10 | 9 | simp2d 1143 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 class class class wbr 5149 ‘cfv 6566 (class class class)co 7435 Basecbs 17251 lecple 17311 occoc 17312 joincjn 18375 meetcmee 18376 0.cp0 18487 1.cp1 18488 OPcops 39166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5313 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-dm 5700 df-iota 6519 df-fv 6574 df-ov 7438 df-oposet 39170 |
This theorem is referenced by: dih1 41281 |
Copyright terms: Public domain | W3C validator |