| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opexmid | Structured version Visualization version GIF version | ||
| Description: Law of excluded middle for orthoposets. (chjo 31451 analog.) (Contributed by NM, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| opexmid.b | ⊢ 𝐵 = (Base‘𝐾) |
| opexmid.o | ⊢ ⊥ = (oc‘𝐾) |
| opexmid.j | ⊢ ∨ = (join‘𝐾) |
| opexmid.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| opexmid | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opexmid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2730 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opexmid.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | opexmid.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 5 | eqid 2730 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | eqid 2730 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | opexmid.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39182 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 9 | 8 | 3anidm23 1423 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 10 | 9 | simp2d 1143 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 occoc 17235 joincjn 18279 meetcmee 18280 0.cp0 18389 1.cp1 18390 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-oposet 39176 |
| This theorem is referenced by: dih1 41287 |
| Copyright terms: Public domain | W3C validator |