Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opexmid Structured version   Visualization version   GIF version

Theorem opexmid 38588
Description: Law of excluded middle for orthoposets. (chjo 31273 analog.) (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
opexmid.b 𝐡 = (Baseβ€˜πΎ)
opexmid.o βŠ₯ = (ocβ€˜πΎ)
opexmid.j ∨ = (joinβ€˜πΎ)
opexmid.u 1 = (1.β€˜πΎ)
Assertion
Ref Expression
opexmid ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∨ ( βŠ₯ β€˜π‘‹)) = 1 )

Proof of Theorem opexmid
StepHypRef Expression
1 opexmid.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 eqid 2726 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
3 opexmid.o . . . 4 βŠ₯ = (ocβ€˜πΎ)
4 opexmid.j . . . 4 ∨ = (joinβ€˜πΎ)
5 eqid 2726 . . . 4 (meetβ€˜πΎ) = (meetβ€˜πΎ)
6 eqid 2726 . . . 4 (0.β€˜πΎ) = (0.β€˜πΎ)
7 opexmid.u . . . 4 1 = (1.β€˜πΎ)
81, 2, 3, 4, 5, 6, 7oposlem 38563 . . 3 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ ((( βŠ₯ β€˜π‘‹) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ (𝑋(leβ€˜πΎ)𝑋 β†’ ( βŠ₯ β€˜π‘‹)(leβ€˜πΎ)( βŠ₯ β€˜π‘‹))) ∧ (𝑋 ∨ ( βŠ₯ β€˜π‘‹)) = 1 ∧ (𝑋(meetβ€˜πΎ)( βŠ₯ β€˜π‘‹)) = (0.β€˜πΎ)))
983anidm23 1418 . 2 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ ((( βŠ₯ β€˜π‘‹) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ (𝑋(leβ€˜πΎ)𝑋 β†’ ( βŠ₯ β€˜π‘‹)(leβ€˜πΎ)( βŠ₯ β€˜π‘‹))) ∧ (𝑋 ∨ ( βŠ₯ β€˜π‘‹)) = 1 ∧ (𝑋(meetβ€˜πΎ)( βŠ₯ β€˜π‘‹)) = (0.β€˜πΎ)))
109simp2d 1140 1 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∨ ( βŠ₯ β€˜π‘‹)) = 1 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17151  lecple 17211  occoc 17212  joincjn 18274  meetcmee 18275  0.cp0 18386  1.cp1 18387  OPcops 38553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-nul 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-dm 5679  df-iota 6488  df-fv 6544  df-ov 7407  df-oposet 38557
This theorem is referenced by:  dih1  40668
  Copyright terms: Public domain W3C validator