Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opexmid Structured version   Visualization version   GIF version

Theorem opexmid 39200
Description: Law of excluded middle for orthoposets. (chjo 31444 analog.) (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
opexmid.b 𝐵 = (Base‘𝐾)
opexmid.o = (oc‘𝐾)
opexmid.j = (join‘𝐾)
opexmid.u 1 = (1.‘𝐾)
Assertion
Ref Expression
opexmid ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 ( 𝑋)) = 1 )

Proof of Theorem opexmid
StepHypRef Expression
1 opexmid.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
3 opexmid.o . . . 4 = (oc‘𝐾)
4 opexmid.j . . . 4 = (join‘𝐾)
5 eqid 2729 . . . 4 (meet‘𝐾) = (meet‘𝐾)
6 eqid 2729 . . . 4 (0.‘𝐾) = (0.‘𝐾)
7 opexmid.u . . . 4 1 = (1.‘𝐾)
81, 2, 3, 4, 5, 6, 7oposlem 39175 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( 𝑋)) = (0.‘𝐾)))
983anidm23 1423 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( 𝑋)) = (0.‘𝐾)))
109simp2d 1143 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 ( 𝑋)) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  occoc 17228  joincjn 18272  meetcmee 18273  0.cp0 18382  1.cp1 18383  OPcops 39165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390  df-oposet 39169
This theorem is referenced by:  dih1  41280
  Copyright terms: Public domain W3C validator