| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opexmid | Structured version Visualization version GIF version | ||
| Description: Law of excluded middle for orthoposets. (chjo 31481 analog.) (Contributed by NM, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| opexmid.b | ⊢ 𝐵 = (Base‘𝐾) |
| opexmid.o | ⊢ ⊥ = (oc‘𝐾) |
| opexmid.j | ⊢ ∨ = (join‘𝐾) |
| opexmid.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| opexmid | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opexmid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2734 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opexmid.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | opexmid.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 5 | eqid 2734 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | eqid 2734 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | opexmid.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39124 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 9 | 8 | 3anidm23 1422 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 10 | 9 | simp2d 1143 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 lecple 17284 occoc 17285 joincjn 18332 meetcmee 18333 0.cp0 18442 1.cp1 18443 OPcops 39114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5288 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-dm 5677 df-iota 6495 df-fv 6550 df-ov 7417 df-oposet 39118 |
| This theorem is referenced by: dih1 41229 |
| Copyright terms: Public domain | W3C validator |