Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opexmid Structured version   Visualization version   GIF version

Theorem opexmid 39207
Description: Law of excluded middle for orthoposets. (chjo 31451 analog.) (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
opexmid.b 𝐵 = (Base‘𝐾)
opexmid.o = (oc‘𝐾)
opexmid.j = (join‘𝐾)
opexmid.u 1 = (1.‘𝐾)
Assertion
Ref Expression
opexmid ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 ( 𝑋)) = 1 )

Proof of Theorem opexmid
StepHypRef Expression
1 opexmid.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2730 . . . 4 (le‘𝐾) = (le‘𝐾)
3 opexmid.o . . . 4 = (oc‘𝐾)
4 opexmid.j . . . 4 = (join‘𝐾)
5 eqid 2730 . . . 4 (meet‘𝐾) = (meet‘𝐾)
6 eqid 2730 . . . 4 (0.‘𝐾) = (0.‘𝐾)
7 opexmid.u . . . 4 1 = (1.‘𝐾)
81, 2, 3, 4, 5, 6, 7oposlem 39182 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( 𝑋)) = (0.‘𝐾)))
983anidm23 1423 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( 𝑋)) = (0.‘𝐾)))
109simp2d 1143 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 ( 𝑋)) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  occoc 17235  joincjn 18279  meetcmee 18280  0.cp0 18389  1.cp1 18390  OPcops 39172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-dm 5651  df-iota 6467  df-fv 6522  df-ov 7393  df-oposet 39176
This theorem is referenced by:  dih1  41287
  Copyright terms: Public domain W3C validator