Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opexmid Structured version   Visualization version   GIF version

Theorem opexmid 39185
Description: Law of excluded middle for orthoposets. (chjo 31477 analog.) (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
opexmid.b 𝐵 = (Base‘𝐾)
opexmid.o = (oc‘𝐾)
opexmid.j = (join‘𝐾)
opexmid.u 1 = (1.‘𝐾)
Assertion
Ref Expression
opexmid ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 ( 𝑋)) = 1 )

Proof of Theorem opexmid
StepHypRef Expression
1 opexmid.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
3 opexmid.o . . . 4 = (oc‘𝐾)
4 opexmid.j . . . 4 = (join‘𝐾)
5 eqid 2729 . . . 4 (meet‘𝐾) = (meet‘𝐾)
6 eqid 2729 . . . 4 (0.‘𝐾) = (0.‘𝐾)
7 opexmid.u . . . 4 1 = (1.‘𝐾)
81, 2, 3, 4, 5, 6, 7oposlem 39160 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( 𝑋)) = (0.‘𝐾)))
983anidm23 1423 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋(meet‘𝐾)( 𝑋)) = (0.‘𝐾)))
109simp2d 1143 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 ( 𝑋)) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  occoc 17187  joincjn 18235  meetcmee 18236  0.cp0 18345  1.cp1 18346  OPcops 39150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-dm 5633  df-iota 6442  df-fv 6494  df-ov 7356  df-oposet 39154
This theorem is referenced by:  dih1  41265
  Copyright terms: Public domain W3C validator