|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnoncon | Structured version Visualization version GIF version | ||
| Description: Law of contradiction for orthoposets. (chocin 31514 analog.) (Contributed by NM, 13-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| opnoncon.b | ⊢ 𝐵 = (Base‘𝐾) | 
| opnoncon.o | ⊢ ⊥ = (oc‘𝐾) | 
| opnoncon.m | ⊢ ∧ = (meet‘𝐾) | 
| opnoncon.z | ⊢ 0 = (0.‘𝐾) | 
| Ref | Expression | 
|---|---|
| opnoncon | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opnoncon.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2737 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opnoncon.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | eqid 2737 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | opnoncon.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 6 | opnoncon.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 7 | eqid 2737 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39183 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) | 
| 9 | 8 | 3anidm23 1423 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) | 
| 10 | 9 | simp3d 1145 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 occoc 17305 joincjn 18357 meetcmee 18358 0.cp0 18468 1.cp1 18469 OPcops 39173 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-dm 5695 df-iota 6514 df-fv 6569 df-ov 7434 df-oposet 39177 | 
| This theorem is referenced by: omlfh1N 39259 omlspjN 39262 atlatmstc 39320 pnonsingN 39935 lhpocnle 40018 dochnoncon 41393 | 
| Copyright terms: Public domain | W3C validator |