Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnoncon Structured version   Visualization version   GIF version

Theorem opnoncon 38534
Description: Law of contradiction for orthoposets. (chocin 31172 analog.) (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
opnoncon.b 𝐡 = (Baseβ€˜πΎ)
opnoncon.o βŠ₯ = (ocβ€˜πΎ)
opnoncon.m ∧ = (meetβ€˜πΎ)
opnoncon.z 0 = (0.β€˜πΎ)
Assertion
Ref Expression
opnoncon ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∧ ( βŠ₯ β€˜π‘‹)) = 0 )

Proof of Theorem opnoncon
StepHypRef Expression
1 opnoncon.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 eqid 2724 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
3 opnoncon.o . . . 4 βŠ₯ = (ocβ€˜πΎ)
4 eqid 2724 . . . 4 (joinβ€˜πΎ) = (joinβ€˜πΎ)
5 opnoncon.m . . . 4 ∧ = (meetβ€˜πΎ)
6 opnoncon.z . . . 4 0 = (0.β€˜πΎ)
7 eqid 2724 . . . 4 (1.β€˜πΎ) = (1.β€˜πΎ)
81, 2, 3, 4, 5, 6, 7oposlem 38508 . . 3 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ ((( βŠ₯ β€˜π‘‹) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ (𝑋(leβ€˜πΎ)𝑋 β†’ ( βŠ₯ β€˜π‘‹)(leβ€˜πΎ)( βŠ₯ β€˜π‘‹))) ∧ (𝑋(joinβ€˜πΎ)( βŠ₯ β€˜π‘‹)) = (1.β€˜πΎ) ∧ (𝑋 ∧ ( βŠ₯ β€˜π‘‹)) = 0 ))
983anidm23 1418 . 2 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ ((( βŠ₯ β€˜π‘‹) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ (𝑋(leβ€˜πΎ)𝑋 β†’ ( βŠ₯ β€˜π‘‹)(leβ€˜πΎ)( βŠ₯ β€˜π‘‹))) ∧ (𝑋(joinβ€˜πΎ)( βŠ₯ β€˜π‘‹)) = (1.β€˜πΎ) ∧ (𝑋 ∧ ( βŠ₯ β€˜π‘‹)) = 0 ))
109simp3d 1141 1 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∧ ( βŠ₯ β€˜π‘‹)) = 0 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  Basecbs 17140  lecple 17200  occoc 17201  joincjn 18263  meetcmee 18264  0.cp0 18375  1.cp1 18376  OPcops 38498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-dm 5676  df-iota 6485  df-fv 6541  df-ov 7404  df-oposet 38502
This theorem is referenced by:  omlfh1N  38584  omlspjN  38587  atlatmstc  38645  pnonsingN  39260  lhpocnle  39343  dochnoncon  40718
  Copyright terms: Public domain W3C validator