![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnoncon | Structured version Visualization version GIF version |
Description: Law of contradiction for orthoposets. (chocin 31172 analog.) (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
opnoncon.b | β’ π΅ = (BaseβπΎ) |
opnoncon.o | β’ β₯ = (ocβπΎ) |
opnoncon.m | β’ β§ = (meetβπΎ) |
opnoncon.z | β’ 0 = (0.βπΎ) |
Ref | Expression |
---|---|
opnoncon | β’ ((πΎ β OP β§ π β π΅) β (π β§ ( β₯ βπ)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnoncon.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2724 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
3 | opnoncon.o | . . . 4 β’ β₯ = (ocβπΎ) | |
4 | eqid 2724 | . . . 4 β’ (joinβπΎ) = (joinβπΎ) | |
5 | opnoncon.m | . . . 4 β’ β§ = (meetβπΎ) | |
6 | opnoncon.z | . . . 4 β’ 0 = (0.βπΎ) | |
7 | eqid 2724 | . . . 4 β’ (1.βπΎ) = (1.βπΎ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 38508 | . . 3 β’ ((πΎ β OP β§ π β π΅ β§ π β π΅) β ((( β₯ βπ) β π΅ β§ ( β₯ β( β₯ βπ)) = π β§ (π(leβπΎ)π β ( β₯ βπ)(leβπΎ)( β₯ βπ))) β§ (π(joinβπΎ)( β₯ βπ)) = (1.βπΎ) β§ (π β§ ( β₯ βπ)) = 0 )) |
9 | 8 | 3anidm23 1418 | . 2 β’ ((πΎ β OP β§ π β π΅) β ((( β₯ βπ) β π΅ β§ ( β₯ β( β₯ βπ)) = π β§ (π(leβπΎ)π β ( β₯ βπ)(leβπΎ)( β₯ βπ))) β§ (π(joinβπΎ)( β₯ βπ)) = (1.βπΎ) β§ (π β§ ( β₯ βπ)) = 0 )) |
10 | 9 | simp3d 1141 | 1 β’ ((πΎ β OP β§ π β π΅) β (π β§ ( β₯ βπ)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5138 βcfv 6533 (class class class)co 7401 Basecbs 17140 lecple 17200 occoc 17201 joincjn 18263 meetcmee 18264 0.cp0 18375 1.cp1 18376 OPcops 38498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-nul 5296 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-dm 5676 df-iota 6485 df-fv 6541 df-ov 7404 df-oposet 38502 |
This theorem is referenced by: omlfh1N 38584 omlspjN 38587 atlatmstc 38645 pnonsingN 39260 lhpocnle 39343 dochnoncon 40718 |
Copyright terms: Public domain | W3C validator |