Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnoncon Structured version   Visualization version   GIF version

Theorem opnoncon 39246
Description: Law of contradiction for orthoposets. (chocin 31470 analog.) (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
opnoncon.b 𝐵 = (Base‘𝐾)
opnoncon.o = (oc‘𝐾)
opnoncon.m = (meet‘𝐾)
opnoncon.z 0 = (0.‘𝐾)
Assertion
Ref Expression
opnoncon ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 ( 𝑋)) = 0 )

Proof of Theorem opnoncon
StepHypRef Expression
1 opnoncon.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2731 . . . 4 (le‘𝐾) = (le‘𝐾)
3 opnoncon.o . . . 4 = (oc‘𝐾)
4 eqid 2731 . . . 4 (join‘𝐾) = (join‘𝐾)
5 opnoncon.m . . . 4 = (meet‘𝐾)
6 opnoncon.z . . . 4 0 = (0.‘𝐾)
7 eqid 2731 . . . 4 (1.‘𝐾) = (1.‘𝐾)
81, 2, 3, 4, 5, 6, 7oposlem 39220 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋(join‘𝐾)( 𝑋)) = (1.‘𝐾) ∧ (𝑋 ( 𝑋)) = 0 ))
983anidm23 1423 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋(join‘𝐾)( 𝑋)) = (1.‘𝐾) ∧ (𝑋 ( 𝑋)) = 0 ))
109simp3d 1144 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 ( 𝑋)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  occoc 17166  joincjn 18214  meetcmee 18215  0.cp0 18324  1.cp1 18325  OPcops 39210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-dm 5626  df-iota 6437  df-fv 6489  df-ov 7349  df-oposet 39214
This theorem is referenced by:  omlfh1N  39296  omlspjN  39299  atlatmstc  39357  pnonsingN  39971  lhpocnle  40054  dochnoncon  41429
  Copyright terms: Public domain W3C validator