![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnoncon | Structured version Visualization version GIF version |
Description: Law of contradiction for orthoposets. (chocin 31428 analog.) (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
opnoncon.b | ⊢ 𝐵 = (Base‘𝐾) |
opnoncon.o | ⊢ ⊥ = (oc‘𝐾) |
opnoncon.m | ⊢ ∧ = (meet‘𝐾) |
opnoncon.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
opnoncon | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnoncon.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2726 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opnoncon.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
4 | eqid 2726 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | opnoncon.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
6 | opnoncon.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
7 | eqid 2726 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 38880 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) |
9 | 8 | 3anidm23 1418 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) |
10 | 9 | simp3d 1141 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 lecple 17273 occoc 17274 joincjn 18336 meetcmee 18337 0.cp0 18448 1.cp1 18449 OPcops 38870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-nul 5311 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-dm 5692 df-iota 6506 df-fv 6562 df-ov 7427 df-oposet 38874 |
This theorem is referenced by: omlfh1N 38956 omlspjN 38959 atlatmstc 39017 pnonsingN 39632 lhpocnle 39715 dochnoncon 41090 |
Copyright terms: Public domain | W3C validator |