Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon2b Structured version   Visualization version   GIF version

Theorem opltcon2b 36414
Description: Contraposition law for strict ordering in orthoposets. (chsscon2 29283 analog.) (Contributed by NM, 5-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b 𝐵 = (Base‘𝐾)
opltcon3.s < = (lt‘𝐾)
opltcon3.o = (oc‘𝐾)
Assertion
Ref Expression
opltcon2b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < ( 𝑌) ↔ 𝑌 < ( 𝑋)))

Proof of Theorem opltcon2b
StepHypRef Expression
1 opltcon3.b . . . . 5 𝐵 = (Base‘𝐾)
2 opltcon3.o . . . . 5 = (oc‘𝐾)
31, 2opoccl 36402 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
433adant2 1128 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
5 opltcon3.s . . . 4 < = (lt‘𝐾)
61, 5, 2opltcon3b 36412 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 < ( 𝑌) ↔ ( ‘( 𝑌)) < ( 𝑋)))
74, 6syld3an3 1406 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < ( 𝑌) ↔ ( ‘( 𝑌)) < ( 𝑋)))
81, 2opococ 36403 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
983adant2 1128 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
109breq1d 5063 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑌)) < ( 𝑋) ↔ 𝑌 < ( 𝑋)))
117, 10bitrd 282 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < ( 𝑌) ↔ 𝑌 < ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5053  cfv 6344  Basecbs 16481  occoc 16571  ltcplt 17549  OPcops 36380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-iota 6303  df-fun 6346  df-fv 6352  df-ov 7149  df-proset 17536  df-poset 17554  df-plt 17566  df-oposet 36384
This theorem is referenced by:  cvrcon3b  36485
  Copyright terms: Public domain W3C validator