Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon2b Structured version   Visualization version   GIF version

Theorem opltcon2b 39200
Description: Contraposition law for strict ordering in orthoposets. (chsscon2 31544 analog.) (Contributed by NM, 5-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b 𝐵 = (Base‘𝐾)
opltcon3.s < = (lt‘𝐾)
opltcon3.o = (oc‘𝐾)
Assertion
Ref Expression
opltcon2b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < ( 𝑌) ↔ 𝑌 < ( 𝑋)))

Proof of Theorem opltcon2b
StepHypRef Expression
1 opltcon3.b . . . . 5 𝐵 = (Base‘𝐾)
2 opltcon3.o . . . . 5 = (oc‘𝐾)
31, 2opoccl 39188 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
433adant2 1131 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
5 opltcon3.s . . . 4 < = (lt‘𝐾)
61, 5, 2opltcon3b 39198 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 < ( 𝑌) ↔ ( ‘( 𝑌)) < ( 𝑋)))
74, 6syld3an3 1409 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < ( 𝑌) ↔ ( ‘( 𝑌)) < ( 𝑋)))
81, 2opococ 39189 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
983adant2 1131 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
109breq1d 5159 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑌)) < ( 𝑋) ↔ 𝑌 < ( 𝑋)))
117, 10bitrd 279 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < ( 𝑌) ↔ 𝑌 < ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1538  wcel 2107   class class class wbr 5149  cfv 6566  Basecbs 17251  occoc 17312  ltcplt 18372  OPcops 39166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-sbc 3793  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-iota 6519  df-fun 6568  df-fv 6574  df-ov 7438  df-proset 18358  df-poset 18377  df-plt 18394  df-oposet 39170
This theorem is referenced by:  cvrcon3b  39271
  Copyright terms: Public domain W3C validator