Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1 Structured version   Visualization version   GIF version

Theorem dih1 39227
Description: The value of isomorphism H at the lattice unit is the set of all vectors. (Contributed by NM, 13-Mar-2014.)
Hypotheses
Ref Expression
dih1.m 1 = (1.‘𝐾)
dih1.h 𝐻 = (LHyp‘𝐾)
dih1.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1.v 𝑉 = (Base‘𝑈)
Assertion
Ref Expression
dih1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼1 ) = 𝑉)

Proof of Theorem dih1
Dummy variables 𝑓 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dih1.h . . 3 𝐻 = (LHyp‘𝐾)
2 dih1.i . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 39220 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼1 ))
4 relxp 5598 . . 3 Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))
5 eqid 2738 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
6 eqid 2738 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
7 dih1.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 dih1.v . . . . 5 𝑉 = (Base‘𝑈)
91, 5, 6, 7, 8dvhvbase 39028 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
109releqd 5679 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Rel 𝑉 ↔ Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))))
114, 10mpbiri 257 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel 𝑉)
12 id 22 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 hlop 37303 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1413ad2antrr 722 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝐾 ∈ OP)
15 simpl 482 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simprl 767 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
17 simprr 769 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
18 eqid 2738 . . . . . . . . . . . . . 14 (le‘𝐾) = (le‘𝐾)
19 eqid 2738 . . . . . . . . . . . . . 14 (oc‘𝐾) = (oc‘𝐾)
20 eqid 2738 . . . . . . . . . . . . . 14 (Atoms‘𝐾) = (Atoms‘𝐾)
2118, 19, 20, 1lhpocnel 37959 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
2221adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
23 eqid 2738 . . . . . . . . . . . . 13 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
2418, 20, 1, 5, 23ltrniotacl 38520 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) ∈ ((LTrn‘𝐾)‘𝑊))
2515, 22, 22, 24syl3anc 1369 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) ∈ ((LTrn‘𝐾)‘𝑊))
261, 5, 6tendocl 38708 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊))
2715, 17, 25, 26syl3anc 1369 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊))
281, 5ltrncnv 38087 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊))
2927, 28syldan 590 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊))
301, 5ltrnco 38660 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))) ∈ ((LTrn‘𝐾)‘𝑊))
3115, 16, 29, 30syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))) ∈ ((LTrn‘𝐾)‘𝑊))
32 eqid 2738 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
33 eqid 2738 . . . . . . . . 9 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
3432, 1, 5, 33trlcl 38105 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))))) ∈ (Base‘𝐾))
3531, 34syldan 590 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (((trL‘𝐾)‘𝑊)‘(𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))))) ∈ (Base‘𝐾))
36 dih1.m . . . . . . . 8 1 = (1.‘𝐾)
3732, 18, 36ople1 37132 . . . . . . 7 ((𝐾 ∈ OP ∧ (((trL‘𝐾)‘𝑊)‘(𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))))) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘(𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 )
3814, 35, 37syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (((trL‘𝐾)‘𝑊)‘(𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 )
3938ex 412 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 ))
4039pm4.71d 561 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (((trL‘𝐾)‘𝑊)‘(𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 )))
419eleq2d 2824 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨𝑓, 𝑠⟩ ∈ 𝑉 ↔ ⟨𝑓, 𝑠⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))))
42 opelxp 5616 . . . . 5 (⟨𝑓, 𝑠⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))
4341, 42bitrdi 286 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨𝑓, 𝑠⟩ ∈ 𝑉 ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
4413adantr 480 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ OP)
4532, 36op1cl 37126 . . . . . 6 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
4644, 45syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 1 ∈ (Base‘𝐾))
47 hlpos 37307 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4847adantr 480 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ Poset)
4932, 1lhpbase 37939 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5049adantl 481 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ (Base‘𝐾))
51 eqid 2738 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5236, 51, 1lhp1cvr 37940 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾) 1 )
5332, 18, 51cvrnle 37221 . . . . . 6 (((𝐾 ∈ Poset ∧ 𝑊 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾)) ∧ 𝑊( ⋖ ‘𝐾) 1 ) → ¬ 1 (le‘𝐾)𝑊)
5448, 50, 46, 52, 53syl31anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ¬ 1 (le‘𝐾)𝑊)
55 hlol 37302 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
56 eqid 2738 . . . . . . . . 9 (meet‘𝐾) = (meet‘𝐾)
5732, 56, 36olm12 37169 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑊 ∈ (Base‘𝐾)) → ( 1 (meet‘𝐾)𝑊) = 𝑊)
5855, 49, 57syl2an 595 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 1 (meet‘𝐾)𝑊) = 𝑊)
5958oveq2d 7271 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊)(join‘𝐾)( 1 (meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑊)(join‘𝐾)𝑊))
60 hllat 37304 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
6160adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ Lat)
6232, 19opoccl 37135 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
6313, 49, 62syl2an 595 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
64 eqid 2738 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
6532, 64latjcom 18080 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)𝑊) = (𝑊(join‘𝐾)((oc‘𝐾)‘𝑊)))
6661, 63, 50, 65syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊)(join‘𝐾)𝑊) = (𝑊(join‘𝐾)((oc‘𝐾)‘𝑊)))
6732, 19, 64, 36opexmid 37148 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊(join‘𝐾)((oc‘𝐾)‘𝑊)) = 1 )
6813, 49, 67syl2an 595 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑊(join‘𝐾)((oc‘𝐾)‘𝑊)) = 1 )
6959, 66, 683eqtrd 2782 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊)(join‘𝐾)( 1 (meet‘𝐾)𝑊)) = 1 )
70 eqid 2738 . . . . . 6 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
71 vex 3426 . . . . . 6 𝑓 ∈ V
72 vex 3426 . . . . . 6 𝑠 ∈ V
7332, 18, 64, 56, 20, 1, 70, 5, 33, 6, 2, 23, 71, 72dihopelvalc 39190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 1 ∈ (Base‘𝐾) ∧ ¬ 1 (le‘𝐾)𝑊) ∧ ((((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)( 1 (meet‘𝐾)𝑊)) = 1 )) → (⟨𝑓, 𝑠⟩ ∈ (𝐼1 ) ↔ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (((trL‘𝐾)‘𝑊)‘(𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 )))
7412, 46, 54, 21, 69, 73syl122anc 1377 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨𝑓, 𝑠⟩ ∈ (𝐼1 ) ↔ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (((trL‘𝐾)‘𝑊)‘(𝑓(𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 )))
7540, 43, 743bitr4rd 311 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨𝑓, 𝑠⟩ ∈ (𝐼1 ) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑉))
7675eqrelrdv2 5694 . 2 (((Rel (𝐼1 ) ∧ Rel 𝑉) ∧ (𝐾 ∈ HL ∧ 𝑊𝐻)) → (𝐼1 ) = 𝑉)
773, 11, 12, 76syl21anc 834 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼1 ) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070   × cxp 5578  ccnv 5579  ccom 5584  Rel wrel 5585  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  lecple 16895  occoc 16896  Posetcpo 17940  joincjn 17944  meetcmee 17945  1.cp1 18057  Latclat 18064  OPcops 37113  OLcol 37115  ccvr 37203  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  TEndoctendo 38693  DVecHcdvh 39019  DIsoHcdih 39169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-undef 8060  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-0g 17069  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tendo 38696  df-edring 38698  df-disoa 38970  df-dvech 39020  df-dib 39080  df-dic 39114  df-dih 39170
This theorem is referenced by:  dih1rn  39228  dih1cnv  39229  dihglb2  39283  doch0  39299  dochocss  39307
  Copyright terms: Public domain W3C validator