Step | Hyp | Ref
| Expression |
1 | | dih1.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | dih1.i |
. . 3
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
3 | 1, 2 | dihvalrel 39293 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘ 1 )) |
4 | | relxp 5607 |
. . 3
⊢ Rel
(((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) |
5 | | eqid 2738 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
6 | | eqid 2738 |
. . . . 5
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
7 | | dih1.u |
. . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
8 | | dih1.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑈) |
9 | 1, 5, 6, 7, 8 | dvhvbase 39101 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
10 | 9 | releqd 5689 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Rel 𝑉 ↔ Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) |
11 | 4, 10 | mpbiri 257 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel 𝑉) |
12 | | id 22 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | | hlop 37376 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
14 | 13 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝐾 ∈ OP) |
15 | | simpl 483 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) |
17 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) |
18 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(le‘𝐾) =
(le‘𝐾) |
19 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(oc‘𝐾) =
(oc‘𝐾) |
20 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
21 | 18, 19, 20, 1 | lhpocnel 38032 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
22 | 21 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
23 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(℩𝑔
∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) = (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) |
24 | 18, 20, 1, 5, 23 | ltrniotacl 38593 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) ∈ ((LTrn‘𝐾)‘𝑊)) |
25 | 15, 22, 22, 24 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) ∈ ((LTrn‘𝐾)‘𝑊)) |
26 | 1, 5, 6 | tendocl 38781 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊)) |
27 | 15, 17, 25, 26 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊)) |
28 | 1, 5 | ltrncnv 38160 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊)) → ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊)) |
29 | 27, 28 | syldan 591 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊)) |
30 | 1, 5 | ltrnco 38733 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))) ∈ ((LTrn‘𝐾)‘𝑊)) |
31 | 15, 16, 29, 30 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))) ∈ ((LTrn‘𝐾)‘𝑊)) |
32 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
33 | | eqid 2738 |
. . . . . . . . 9
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
34 | 32, 1, 5, 33 | trlcl 38178 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))))) ∈ (Base‘𝐾)) |
35 | 31, 34 | syldan 591 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (((trL‘𝐾)‘𝑊)‘(𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))))) ∈ (Base‘𝐾)) |
36 | | dih1.m |
. . . . . . . 8
⊢ 1 =
(1.‘𝐾) |
37 | 32, 18, 36 | ople1 37205 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧
(((trL‘𝐾)‘𝑊)‘(𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))))) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘(𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 ) |
38 | 14, 35, 37 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (((trL‘𝐾)‘𝑊)‘(𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 ) |
39 | 38 | ex 413 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 )) |
40 | 39 | pm4.71d 562 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (((trL‘𝐾)‘𝑊)‘(𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 ))) |
41 | 9 | eleq2d 2824 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈𝑓, 𝑠〉 ∈ 𝑉 ↔ 〈𝑓, 𝑠〉 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) |
42 | | opelxp 5625 |
. . . . 5
⊢
(〈𝑓, 𝑠〉 ∈
(((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) |
43 | 41, 42 | bitrdi 287 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈𝑓, 𝑠〉 ∈ 𝑉 ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))) |
44 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ OP) |
45 | 32, 36 | op1cl 37199 |
. . . . . 6
⊢ (𝐾 ∈ OP → 1 ∈
(Base‘𝐾)) |
46 | 44, 45 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 1 ∈ (Base‘𝐾)) |
47 | | hlpos 37380 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
48 | 47 | adantr 481 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ Poset) |
49 | 32, 1 | lhpbase 38012 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
50 | 49 | adantl 482 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ (Base‘𝐾)) |
51 | | eqid 2738 |
. . . . . . 7
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
52 | 36, 51, 1 | lhp1cvr 38013 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾) 1 ) |
53 | 32, 18, 51 | cvrnle 37294 |
. . . . . 6
⊢ (((𝐾 ∈ Poset ∧ 𝑊 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾)) ∧ 𝑊( ⋖ ‘𝐾) 1 ) → ¬ 1
(le‘𝐾)𝑊) |
54 | 48, 50, 46, 52, 53 | syl31anc 1372 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ¬ 1 (le‘𝐾)𝑊) |
55 | | hlol 37375 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
56 | | eqid 2738 |
. . . . . . . . 9
⊢
(meet‘𝐾) =
(meet‘𝐾) |
57 | 32, 56, 36 | olm12 37242 |
. . . . . . . 8
⊢ ((𝐾 ∈ OL ∧ 𝑊 ∈ (Base‘𝐾)) → ( 1 (meet‘𝐾)𝑊) = 𝑊) |
58 | 55, 49, 57 | syl2an 596 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 1 (meet‘𝐾)𝑊) = 𝑊) |
59 | 58 | oveq2d 7291 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊)(join‘𝐾)( 1 (meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑊)(join‘𝐾)𝑊)) |
60 | | hllat 37377 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
61 | 60 | adantr 481 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ Lat) |
62 | 32, 19 | opoccl 37208 |
. . . . . . . 8
⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
63 | 13, 49, 62 | syl2an 596 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
64 | | eqid 2738 |
. . . . . . . 8
⊢
(join‘𝐾) =
(join‘𝐾) |
65 | 32, 64 | latjcom 18165 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧
((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)𝑊) = (𝑊(join‘𝐾)((oc‘𝐾)‘𝑊))) |
66 | 61, 63, 50, 65 | syl3anc 1370 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊)(join‘𝐾)𝑊) = (𝑊(join‘𝐾)((oc‘𝐾)‘𝑊))) |
67 | 32, 19, 64, 36 | opexmid 37221 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊(join‘𝐾)((oc‘𝐾)‘𝑊)) = 1 ) |
68 | 13, 49, 67 | syl2an 596 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑊(join‘𝐾)((oc‘𝐾)‘𝑊)) = 1 ) |
69 | 59, 66, 68 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊)(join‘𝐾)( 1 (meet‘𝐾)𝑊)) = 1 ) |
70 | | eqid 2738 |
. . . . . 6
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) |
71 | | vex 3436 |
. . . . . 6
⊢ 𝑓 ∈ V |
72 | | vex 3436 |
. . . . . 6
⊢ 𝑠 ∈ V |
73 | 32, 18, 64, 56, 20, 1, 70, 5, 33, 6, 2, 23, 71, 72 | dihopelvalc 39263 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( 1 ∈ (Base‘𝐾) ∧ ¬ 1 (le‘𝐾)𝑊) ∧ ((((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)( 1 (meet‘𝐾)𝑊)) = 1 )) → (〈𝑓, 𝑠〉 ∈ (𝐼‘ 1 ) ↔ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (((trL‘𝐾)‘𝑊)‘(𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 ))) |
74 | 12, 46, 54, 21, 69, 73 | syl122anc 1378 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈𝑓, 𝑠〉 ∈ (𝐼‘ 1 ) ↔ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (((trL‘𝐾)‘𝑊)‘(𝑓 ∘ ◡(𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊)))))(le‘𝐾) 1 ))) |
75 | 40, 43, 74 | 3bitr4rd 312 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈𝑓, 𝑠〉 ∈ (𝐼‘ 1 ) ↔ 〈𝑓, 𝑠〉 ∈ 𝑉)) |
76 | 75 | eqrelrdv2 5705 |
. 2
⊢ (((Rel
(𝐼‘ 1 ) ∧ Rel
𝑉) ∧ (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) → (𝐼‘ 1 ) = 𝑉) |
77 | 3, 11, 12, 76 | syl21anc 835 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 1 ) = 𝑉) |