MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpgrp Structured version   Visualization version   GIF version

Theorem pgpgrp 19114
Description: Reverse closure for the second argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.)
Assertion
Ref Expression
pgpgrp (𝑃 pGrp 𝐺𝐺 ∈ Grp)

Proof of Theorem pgpgrp
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2738 . . 3 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 19112 . 2 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
43simp2bi 1144 1 (𝑃 pGrp 𝐺𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cn0 12163  cexp 13710  cprime 16304  Basecbs 16840  Grpcgrp 18492  odcod 19047   pGrp cpgp 19049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-iota 6376  df-fv 6426  df-ov 7258  df-pgp 19053
This theorem is referenced by:  pgphash  19127
  Copyright terms: Public domain W3C validator