MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpgrp Structured version   Visualization version   GIF version

Theorem pgpgrp 19504
Description: Reverse closure for the second argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.)
Assertion
Ref Expression
pgpgrp (𝑃 pGrp 𝐺𝐺 ∈ Grp)

Proof of Theorem pgpgrp
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2731 . . 3 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 19502 . 2 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
43simp2bi 1146 1 (𝑃 pGrp 𝐺𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  0cn0 12378  cexp 13965  cprime 16579  Basecbs 17117  Grpcgrp 18843  odcod 19434   pGrp cpgp 19436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-iota 6437  df-fv 6489  df-ov 7349  df-pgp 19440
This theorem is referenced by:  pgphash  19517
  Copyright terms: Public domain W3C validator