MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpgrp Structured version   Visualization version   GIF version

Theorem pgpgrp 19592
Description: Reverse closure for the second argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.)
Assertion
Ref Expression
pgpgrp (𝑃 pGrp 𝐺𝐺 ∈ Grp)

Proof of Theorem pgpgrp
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2726 . . 3 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 19590 . 2 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
43simp2bi 1143 1 (𝑃 pGrp 𝐺𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wral 3051  wrex 3060   class class class wbr 5153  cfv 6554  (class class class)co 7424  0cn0 12524  cexp 14081  cprime 16672  Basecbs 17213  Grpcgrp 18928  odcod 19522   pGrp cpgp 19524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-xp 5688  df-iota 6506  df-fv 6562  df-ov 7427  df-pgp 19528
This theorem is referenced by:  pgphash  19605
  Copyright terms: Public domain W3C validator