![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pgpgrp | Structured version Visualization version GIF version |
Description: Reverse closure for the second argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
Ref | Expression |
---|---|
pgpgrp | ⊢ (𝑃 pGrp 𝐺 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2726 | . . 3 ⊢ (od‘𝐺) = (od‘𝐺) | |
3 | 1, 2 | ispgp 19590 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
4 | 3 | simp2bi 1143 | 1 ⊢ (𝑃 pGrp 𝐺 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 ℕ0cn0 12524 ↑cexp 14081 ℙcprime 16672 Basecbs 17213 Grpcgrp 18928 odcod 19522 pGrp cpgp 19524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-xp 5688 df-iota 6506 df-fv 6562 df-ov 7427 df-pgp 19528 |
This theorem is referenced by: pgphash 19605 |
Copyright terms: Public domain | W3C validator |