| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgpgrp | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the second argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| pgpgrp | ⊢ (𝑃 pGrp 𝐺 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 3 | 1, 2 | ispgp 19506 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝑃 pGrp 𝐺 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℕ0cn0 12388 ↑cexp 13970 ℙcprime 16584 Basecbs 17122 Grpcgrp 18848 odcod 19438 pGrp cpgp 19440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-iota 6442 df-fv 6494 df-ov 7355 df-pgp 19444 |
| This theorem is referenced by: pgphash 19521 |
| Copyright terms: Public domain | W3C validator |