Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pgpprm | Structured version Visualization version GIF version |
Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
Ref | Expression |
---|---|
pgpprm | ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (od‘𝐺) = (od‘𝐺) | |
3 | 1, 2 | ispgp 19112 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
4 | 3 | simp1bi 1143 | 1 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℕ0cn0 12163 ↑cexp 13710 ℙcprime 16304 Basecbs 16840 Grpcgrp 18492 odcod 19047 pGrp cpgp 19049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-iota 6376 df-fv 6426 df-ov 7258 df-pgp 19053 |
This theorem is referenced by: subgpgp 19117 pgpssslw 19134 sylow2blem3 19142 pgpfac1lem2 19593 pgpfac1lem3a 19594 pgpfac1lem3 19595 pgpfac1lem4 19596 pgpfaclem1 19599 |
Copyright terms: Public domain | W3C validator |