MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpprm Structured version   Visualization version   GIF version

Theorem pgpprm 19611
Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.)
Assertion
Ref Expression
pgpprm (𝑃 pGrp 𝐺𝑃 ∈ ℙ)

Proof of Theorem pgpprm
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2737 . . 3 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 19610 . 2 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
43simp1bi 1146 1 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cn0 12526  cexp 14102  cprime 16708  Basecbs 17247  Grpcgrp 18951  odcod 19542   pGrp cpgp 19544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-iota 6514  df-fv 6569  df-ov 7434  df-pgp 19548
This theorem is referenced by:  subgpgp  19615  pgpssslw  19632  sylow2blem3  19640  pgpfac1lem2  20095  pgpfac1lem3a  20096  pgpfac1lem3  20097  pgpfac1lem4  20098  pgpfaclem1  20101
  Copyright terms: Public domain W3C validator