| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgpprm | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| pgpprm | ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2735 | . . 3 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 3 | 1, 2 | ispgp 19573 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℕ0cn0 12501 ↑cexp 14079 ℙcprime 16690 Basecbs 17228 Grpcgrp 18916 odcod 19505 pGrp cpgp 19507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-iota 6484 df-fv 6539 df-ov 7408 df-pgp 19511 |
| This theorem is referenced by: subgpgp 19578 pgpssslw 19595 sylow2blem3 19603 pgpfac1lem2 20058 pgpfac1lem3a 20059 pgpfac1lem3 20060 pgpfac1lem4 20061 pgpfaclem1 20064 |
| Copyright terms: Public domain | W3C validator |