| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgpprm | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| pgpprm | ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2737 | . . 3 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 3 | 1, 2 | ispgp 19610 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 4 | 3 | simp1bi 1146 | 1 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℕ0cn0 12526 ↑cexp 14102 ℙcprime 16708 Basecbs 17247 Grpcgrp 18951 odcod 19542 pGrp cpgp 19544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-iota 6514 df-fv 6569 df-ov 7434 df-pgp 19548 |
| This theorem is referenced by: subgpgp 19615 pgpssslw 19632 sylow2blem3 19640 pgpfac1lem2 20095 pgpfac1lem3a 20096 pgpfac1lem3 20097 pgpfac1lem4 20098 pgpfaclem1 20101 |
| Copyright terms: Public domain | W3C validator |