| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgpprm | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| pgpprm | ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 3 | 1, 2 | ispgp 19502 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℕ0cn0 12378 ↑cexp 13965 ℙcprime 16579 Basecbs 17117 Grpcgrp 18843 odcod 19434 pGrp cpgp 19436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-iota 6437 df-fv 6489 df-ov 7349 df-pgp 19440 |
| This theorem is referenced by: subgpgp 19507 pgpssslw 19524 sylow2blem3 19532 pgpfac1lem2 19987 pgpfac1lem3a 19988 pgpfac1lem3 19989 pgpfac1lem4 19990 pgpfaclem1 19993 |
| Copyright terms: Public domain | W3C validator |