MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpprm Structured version   Visualization version   GIF version

Theorem pgpprm 19299
Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.)
Assertion
Ref Expression
pgpprm (𝑃 pGrp 𝐺𝑃 ∈ ℙ)

Proof of Theorem pgpprm
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2737 . . 3 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 19298 . 2 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
43simp1bi 1145 1 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3062  wrex 3071   class class class wbr 5100  cfv 6488  (class class class)co 7346  0cn0 12343  cexp 13892  cprime 16478  Basecbs 17014  Grpcgrp 18678  odcod 19233   pGrp cpgp 19235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pr 5379
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-br 5101  df-opab 5163  df-xp 5633  df-iota 6440  df-fv 6496  df-ov 7349  df-pgp 19239
This theorem is referenced by:  subgpgp  19303  pgpssslw  19320  sylow2blem3  19328  pgpfac1lem2  19777  pgpfac1lem3a  19778  pgpfac1lem3  19779  pgpfac1lem4  19780  pgpfaclem1  19783
  Copyright terms: Public domain W3C validator