| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgpprm | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| pgpprm | ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2730 | . . 3 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 3 | 1, 2 | ispgp 19529 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℕ0cn0 12449 ↑cexp 14033 ℙcprime 16648 Basecbs 17186 Grpcgrp 18872 odcod 19461 pGrp cpgp 19463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-iota 6467 df-fv 6522 df-ov 7393 df-pgp 19467 |
| This theorem is referenced by: subgpgp 19534 pgpssslw 19551 sylow2blem3 19559 pgpfac1lem2 20014 pgpfac1lem3a 20015 pgpfac1lem3 20016 pgpfac1lem4 20017 pgpfaclem1 20020 |
| Copyright terms: Public domain | W3C validator |