MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpprm Structured version   Visualization version   GIF version

Theorem pgpprm 19523
Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.)
Assertion
Ref Expression
pgpprm (𝑃 pGrp 𝐺𝑃 ∈ ℙ)

Proof of Theorem pgpprm
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2729 . . 3 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 19522 . 2 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
43simp1bi 1145 1 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cn0 12442  cexp 14026  cprime 16641  Basecbs 17179  Grpcgrp 18865  odcod 19454   pGrp cpgp 19456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-iota 6464  df-fv 6519  df-ov 7390  df-pgp 19460
This theorem is referenced by:  subgpgp  19527  pgpssslw  19544  sylow2blem3  19552  pgpfac1lem2  20007  pgpfac1lem3a  20008  pgpfac1lem3  20009  pgpfac1lem4  20010  pgpfaclem1  20013
  Copyright terms: Public domain W3C validator