![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pgpprm | Structured version Visualization version GIF version |
Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
Ref | Expression |
---|---|
pgpprm | ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (od‘𝐺) = (od‘𝐺) | |
3 | 1, 2 | ispgp 19634 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
4 | 3 | simp1bi 1145 | 1 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℕ0cn0 12553 ↑cexp 14112 ℙcprime 16718 Basecbs 17258 Grpcgrp 18973 odcod 19566 pGrp cpgp 19568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-iota 6525 df-fv 6581 df-ov 7451 df-pgp 19572 |
This theorem is referenced by: subgpgp 19639 pgpssslw 19656 sylow2blem3 19664 pgpfac1lem2 20119 pgpfac1lem3a 20120 pgpfac1lem3 20121 pgpfac1lem4 20122 pgpfaclem1 20125 |
Copyright terms: Public domain | W3C validator |