Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pgpprm | Structured version Visualization version GIF version |
Description: Reverse closure for the first argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.) |
Ref | Expression |
---|---|
pgpprm | ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2737 | . . 3 ⊢ (od‘𝐺) = (od‘𝐺) | |
3 | 1, 2 | ispgp 19298 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
4 | 3 | simp1bi 1145 | 1 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 class class class wbr 5100 ‘cfv 6488 (class class class)co 7346 ℕ0cn0 12343 ↑cexp 13892 ℙcprime 16478 Basecbs 17014 Grpcgrp 18678 odcod 19233 pGrp cpgp 19235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-xp 5633 df-iota 6440 df-fv 6496 df-ov 7349 df-pgp 19239 |
This theorem is referenced by: subgpgp 19303 pgpssslw 19320 sylow2blem3 19328 pgpfac1lem2 19777 pgpfac1lem3a 19778 pgpfac1lem3 19779 pgpfac1lem4 19780 pgpfaclem1 19783 |
Copyright terms: Public domain | W3C validator |