![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pgpfi1 | Structured version Visualization version GIF version |
Description: A finite group with order a power of a prime 𝑃 is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
pgpfi1.1 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
pgpfi1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃↑𝑁) → 𝑃 pGrp 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1193 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝑃 ∈ ℙ) | |
2 | simpl1 1192 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝐺 ∈ Grp) | |
3 | simpll3 1215 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑁 ∈ ℕ0) | |
4 | 2 | adantr 482 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) |
5 | simplr 768 | . . . . . . . . . 10 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) = (𝑃↑𝑁)) | |
6 | 1 | adantr 482 | . . . . . . . . . . . . 13 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ ℙ) |
7 | prmnn 16608 | . . . . . . . . . . . . 13 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . . . . . . . . . . 12 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ ℕ) |
9 | 8, 3 | nnexpcld 14205 | . . . . . . . . . . 11 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑃↑𝑁) ∈ ℕ) |
10 | 9 | nnnn0d 12529 | . . . . . . . . . 10 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑃↑𝑁) ∈ ℕ0) |
11 | 5, 10 | eqeltrd 2834 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) ∈ ℕ0) |
12 | pgpfi1.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (Base‘𝐺) | |
13 | 12 | fvexi 6903 | . . . . . . . . . 10 ⊢ 𝑋 ∈ V |
14 | hashclb 14315 | . . . . . . . . . 10 ⊢ (𝑋 ∈ V → (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0) |
16 | 11, 15 | sylibr 233 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ Fin) |
17 | simpr 486 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
18 | eqid 2733 | . . . . . . . . 9 ⊢ (od‘𝐺) = (od‘𝐺) | |
19 | 12, 18 | oddvds2 19429 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
20 | 4, 16, 17, 19 | syl3anc 1372 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
21 | 20, 5 | breqtrd 5174 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁)) |
22 | oveq2 7414 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝑃↑𝑛) = (𝑃↑𝑁)) | |
23 | 22 | breq2d 5160 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁))) |
24 | 23 | rspcev 3613 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛)) |
25 | 3, 21, 24 | syl2anc 585 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛)) |
26 | 12, 18 | odcl2 19428 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
27 | 4, 16, 17, 26 | syl3anc 1372 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
28 | pcprmpw2 16812 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥))))) | |
29 | pcprmpw 16813 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥))))) | |
30 | 28, 29 | bitr4d 282 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
31 | 6, 27, 30 | syl2anc 585 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
32 | 25, 31 | mpbid 231 | . . . 4 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
33 | 32 | ralrimiva 3147 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
34 | 12, 18 | ispgp 19455 | . . 3 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
35 | 1, 2, 33, 34 | syl3anbrc 1344 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝑃 pGrp 𝐺) |
36 | 35 | ex 414 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃↑𝑁) → 𝑃 pGrp 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 Vcvv 3475 class class class wbr 5148 ‘cfv 6541 (class class class)co 7406 Fincfn 8936 ℕcn 12209 ℕ0cn0 12469 ↑cexp 14024 ♯chash 14287 ∥ cdvds 16194 ℙcprime 16605 pCnt cpc 16766 Basecbs 17141 Grpcgrp 18816 odcod 19387 pGrp cpgp 19389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-2o 8464 df-oadd 8467 df-omul 8468 df-er 8700 df-ec 8702 df-qs 8706 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-acn 9934 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-fz 13482 df-fzo 13625 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-sum 15630 df-dvds 16195 df-gcd 16433 df-prm 16606 df-pc 16767 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17142 df-ress 17171 df-plusg 17207 df-0g 17384 df-mgm 18558 df-sgrp 18607 df-mnd 18623 df-grp 18819 df-minusg 18820 df-sbg 18821 df-mulg 18946 df-subg 18998 df-eqg 19000 df-od 19391 df-pgp 19393 |
This theorem is referenced by: pgp0 19459 pgpfi 19468 |
Copyright terms: Public domain | W3C validator |