MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfi1 Structured version   Visualization version   GIF version

Theorem pgpfi1 19016
Description: A finite group with order a power of a prime 𝑃 is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
pgpfi1.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
pgpfi1 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃𝑁) → 𝑃 pGrp 𝐺))

Proof of Theorem pgpfi1
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1194 . . 3 (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) → 𝑃 ∈ ℙ)
2 simpl1 1193 . . 3 (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) → 𝐺 ∈ Grp)
3 simpll3 1216 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑁 ∈ ℕ0)
42adantr 484 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
5 simplr 769 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (♯‘𝑋) = (𝑃𝑁))
61adantr 484 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑃 ∈ ℙ)
7 prmnn 16263 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
86, 7syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑃 ∈ ℕ)
98, 3nnexpcld 13844 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (𝑃𝑁) ∈ ℕ)
109nnnn0d 12179 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (𝑃𝑁) ∈ ℕ0)
115, 10eqeltrd 2840 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (♯‘𝑋) ∈ ℕ0)
12 pgpfi1.1 . . . . . . . . . . 11 𝑋 = (Base‘𝐺)
1312fvexi 6752 . . . . . . . . . 10 𝑋 ∈ V
14 hashclb 13957 . . . . . . . . . 10 (𝑋 ∈ V → (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0))
1513, 14ax-mp 5 . . . . . . . . 9 (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0)
1611, 15sylibr 237 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑋 ∈ Fin)
17 simpr 488 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑥𝑋)
18 eqid 2739 . . . . . . . . 9 (od‘𝐺) = (od‘𝐺)
1912, 18oddvds2 18989 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋))
204, 16, 17, 19syl3anc 1373 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋))
2120, 5breqtrd 5095 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∥ (𝑃𝑁))
22 oveq2 7242 . . . . . . . 8 (𝑛 = 𝑁 → (𝑃𝑛) = (𝑃𝑁))
2322breq2d 5081 . . . . . . 7 (𝑛 = 𝑁 → (((od‘𝐺)‘𝑥) ∥ (𝑃𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ (𝑃𝑁)))
2423rspcev 3552 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛))
253, 21, 24syl2anc 587 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛))
2612, 18odcl2 18988 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ)
274, 16, 17, 26syl3anc 1373 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ)
28 pcprmpw2 16467 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥)))))
29 pcprmpw 16468 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥)))))
3028, 29bitr4d 285 . . . . . 6 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
316, 27, 30syl2anc 587 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
3225, 31mpbid 235 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
3332ralrimiva 3108 . . 3 (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) → ∀𝑥𝑋𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
3412, 18ispgp 19013 . . 3 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
351, 2, 33, 34syl3anbrc 1345 . 2 (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) → 𝑃 pGrp 𝐺)
3635ex 416 1 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃𝑁) → 𝑃 pGrp 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3064  wrex 3065  Vcvv 3423   class class class wbr 5069  cfv 6400  (class class class)co 7234  Fincfn 8649  cn 11859  0cn0 12119  cexp 13666  chash 13928  cdvds 15847  cprime 16260   pCnt cpc 16421  Basecbs 16792  Grpcgrp 18397  odcod 18948   pGrp cpgp 18950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-inf2 9285  ax-cnex 10814  ax-resscn 10815  ax-1cn 10816  ax-icn 10817  ax-addcl 10818  ax-addrcl 10819  ax-mulcl 10820  ax-mulrcl 10821  ax-mulcom 10822  ax-addass 10823  ax-mulass 10824  ax-distr 10825  ax-i2m1 10826  ax-1ne0 10827  ax-1rid 10828  ax-rnegex 10829  ax-rrecex 10830  ax-cnre 10831  ax-pre-lttri 10832  ax-pre-lttrn 10833  ax-pre-ltadd 10834  ax-pre-mulgt0 10835  ax-pre-sup 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-se 5527  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-isom 6409  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-2o 8226  df-oadd 8229  df-omul 8230  df-er 8414  df-ec 8416  df-qs 8420  df-map 8533  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-sup 9087  df-inf 9088  df-oi 9155  df-card 9584  df-acn 9587  df-pnf 10898  df-mnf 10899  df-xr 10900  df-ltxr 10901  df-le 10902  df-sub 11093  df-neg 11094  df-div 11519  df-nn 11860  df-2 11922  df-3 11923  df-n0 12120  df-z 12206  df-uz 12468  df-q 12574  df-rp 12616  df-fz 13125  df-fzo 13268  df-fl 13396  df-mod 13474  df-seq 13606  df-exp 13667  df-hash 13929  df-cj 14694  df-re 14695  df-im 14696  df-sqrt 14830  df-abs 14831  df-clim 15081  df-sum 15282  df-dvds 15848  df-gcd 16086  df-prm 16261  df-pc 16422  df-sets 16749  df-slot 16767  df-ndx 16777  df-base 16793  df-ress 16817  df-plusg 16847  df-0g 16978  df-mgm 18146  df-sgrp 18195  df-mnd 18206  df-grp 18400  df-minusg 18401  df-sbg 18402  df-mulg 18521  df-subg 18572  df-eqg 18574  df-od 18952  df-pgp 18954
This theorem is referenced by:  pgp0  19017  pgpfi  19026
  Copyright terms: Public domain W3C validator