| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgpfi1 | Structured version Visualization version GIF version | ||
| Description: A finite group with order a power of a prime 𝑃 is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| pgpfi1.1 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| pgpfi1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃↑𝑁) → 𝑃 pGrp 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝑃 ∈ ℙ) | |
| 2 | simpl1 1192 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝐺 ∈ Grp) | |
| 3 | simpll3 1215 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑁 ∈ ℕ0) | |
| 4 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 5 | simplr 768 | . . . . . . . . . 10 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) = (𝑃↑𝑁)) | |
| 6 | 1 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ ℙ) |
| 7 | prmnn 16693 | . . . . . . . . . . . . 13 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . . . . 12 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ ℕ) |
| 9 | 8, 3 | nnexpcld 14263 | . . . . . . . . . . 11 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑃↑𝑁) ∈ ℕ) |
| 10 | 9 | nnnn0d 12562 | . . . . . . . . . 10 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑃↑𝑁) ∈ ℕ0) |
| 11 | 5, 10 | eqeltrd 2834 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) ∈ ℕ0) |
| 12 | pgpfi1.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (Base‘𝐺) | |
| 13 | 12 | fvexi 6890 | . . . . . . . . . 10 ⊢ 𝑋 ∈ V |
| 14 | hashclb 14376 | . . . . . . . . . 10 ⊢ (𝑋 ∈ V → (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0) |
| 16 | 11, 15 | sylibr 234 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ Fin) |
| 17 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 18 | eqid 2735 | . . . . . . . . 9 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 19 | 12, 18 | oddvds2 19547 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
| 20 | 4, 16, 17, 19 | syl3anc 1373 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
| 21 | 20, 5 | breqtrd 5145 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁)) |
| 22 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝑃↑𝑛) = (𝑃↑𝑁)) | |
| 23 | 22 | breq2d 5131 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁))) |
| 24 | 23 | rspcev 3601 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛)) |
| 25 | 3, 21, 24 | syl2anc 584 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛)) |
| 26 | 12, 18 | odcl2 19546 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
| 27 | 4, 16, 17, 26 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
| 28 | pcprmpw2 16902 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥))))) | |
| 29 | pcprmpw 16903 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥))))) | |
| 30 | 28, 29 | bitr4d 282 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 31 | 6, 27, 30 | syl2anc 584 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 32 | 25, 31 | mpbid 232 | . . . 4 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
| 33 | 32 | ralrimiva 3132 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
| 34 | 12, 18 | ispgp 19573 | . . 3 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 35 | 1, 2, 33, 34 | syl3anbrc 1344 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝑃 pGrp 𝐺) |
| 36 | 35 | ex 412 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃↑𝑁) → 𝑃 pGrp 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 Vcvv 3459 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 ℕcn 12240 ℕ0cn0 12501 ↑cexp 14079 ♯chash 14348 ∥ cdvds 16272 ℙcprime 16690 pCnt cpc 16856 Basecbs 17228 Grpcgrp 18916 odcod 19505 pGrp cpgp 19507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-dvds 16273 df-gcd 16514 df-prm 16691 df-pc 16857 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-eqg 19108 df-od 19509 df-pgp 19511 |
| This theorem is referenced by: pgp0 19577 pgpfi 19586 |
| Copyright terms: Public domain | W3C validator |