| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgpfi1 | Structured version Visualization version GIF version | ||
| Description: A finite group with order a power of a prime 𝑃 is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| pgpfi1.1 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| pgpfi1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃↑𝑁) → 𝑃 pGrp 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1192 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝑃 ∈ ℙ) | |
| 2 | simpl1 1191 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝐺 ∈ Grp) | |
| 3 | simpll3 1214 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑁 ∈ ℕ0) | |
| 4 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 5 | simplr 768 | . . . . . . . . . 10 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) = (𝑃↑𝑁)) | |
| 6 | 1 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ ℙ) |
| 7 | prmnn 16693 | . . . . . . . . . . . . 13 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . . . . 12 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ ℕ) |
| 9 | 8, 3 | nnexpcld 14266 | . . . . . . . . . . 11 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑃↑𝑁) ∈ ℕ) |
| 10 | 9 | nnnn0d 12570 | . . . . . . . . . 10 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑃↑𝑁) ∈ ℕ0) |
| 11 | 5, 10 | eqeltrd 2833 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) ∈ ℕ0) |
| 12 | pgpfi1.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (Base‘𝐺) | |
| 13 | 12 | fvexi 6900 | . . . . . . . . . 10 ⊢ 𝑋 ∈ V |
| 14 | hashclb 14379 | . . . . . . . . . 10 ⊢ (𝑋 ∈ V → (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0)) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0) |
| 16 | 11, 15 | sylibr 234 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ Fin) |
| 17 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 18 | eqid 2734 | . . . . . . . . 9 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 19 | 12, 18 | oddvds2 19552 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
| 20 | 4, 16, 17, 19 | syl3anc 1372 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
| 21 | 20, 5 | breqtrd 5149 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁)) |
| 22 | oveq2 7421 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝑃↑𝑛) = (𝑃↑𝑁)) | |
| 23 | 22 | breq2d 5135 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁))) |
| 24 | 23 | rspcev 3605 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛)) |
| 25 | 3, 21, 24 | syl2anc 584 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛)) |
| 26 | 12, 18 | odcl2 19551 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
| 27 | 4, 16, 17, 26 | syl3anc 1372 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
| 28 | pcprmpw2 16902 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥))))) | |
| 29 | pcprmpw 16903 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥))))) | |
| 30 | 28, 29 | bitr4d 282 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 31 | 6, 27, 30 | syl2anc 584 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 32 | 25, 31 | mpbid 232 | . . . 4 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
| 33 | 32 | ralrimiva 3133 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
| 34 | 12, 18 | ispgp 19578 | . . 3 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
| 35 | 1, 2, 33, 34 | syl3anbrc 1343 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝑃 pGrp 𝐺) |
| 36 | 35 | ex 412 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃↑𝑁) → 𝑃 pGrp 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 Vcvv 3463 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Fincfn 8967 ℕcn 12248 ℕ0cn0 12509 ↑cexp 14084 ♯chash 14351 ∥ cdvds 16272 ℙcprime 16690 pCnt cpc 16856 Basecbs 17229 Grpcgrp 18920 odcod 19510 pGrp cpgp 19512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-disj 5091 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8727 df-ec 8729 df-qs 8733 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-acn 9964 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-clim 15506 df-sum 15705 df-dvds 16273 df-gcd 16514 df-prm 16691 df-pc 16857 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-subg 19110 df-eqg 19112 df-od 19514 df-pgp 19516 |
| This theorem is referenced by: pgp0 19582 pgpfi 19591 |
| Copyright terms: Public domain | W3C validator |