Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pgpfi1 | Structured version Visualization version GIF version |
Description: A finite group with order a power of a prime 𝑃 is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
pgpfi1.1 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
pgpfi1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃↑𝑁) → 𝑃 pGrp 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1194 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝑃 ∈ ℙ) | |
2 | simpl1 1193 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝐺 ∈ Grp) | |
3 | simpll3 1216 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑁 ∈ ℕ0) | |
4 | 2 | adantr 484 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) |
5 | simplr 769 | . . . . . . . . . 10 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) = (𝑃↑𝑁)) | |
6 | 1 | adantr 484 | . . . . . . . . . . . . 13 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ ℙ) |
7 | prmnn 16263 | . . . . . . . . . . . . 13 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . . . . . . . . . . 12 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ ℕ) |
9 | 8, 3 | nnexpcld 13844 | . . . . . . . . . . 11 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑃↑𝑁) ∈ ℕ) |
10 | 9 | nnnn0d 12179 | . . . . . . . . . 10 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑃↑𝑁) ∈ ℕ0) |
11 | 5, 10 | eqeltrd 2840 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) ∈ ℕ0) |
12 | pgpfi1.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (Base‘𝐺) | |
13 | 12 | fvexi 6752 | . . . . . . . . . 10 ⊢ 𝑋 ∈ V |
14 | hashclb 13957 | . . . . . . . . . 10 ⊢ (𝑋 ∈ V → (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0) |
16 | 11, 15 | sylibr 237 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ Fin) |
17 | simpr 488 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
18 | eqid 2739 | . . . . . . . . 9 ⊢ (od‘𝐺) = (od‘𝐺) | |
19 | 12, 18 | oddvds2 18989 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
20 | 4, 16, 17, 19 | syl3anc 1373 | . . . . . . 7 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
21 | 20, 5 | breqtrd 5095 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁)) |
22 | oveq2 7242 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝑃↑𝑛) = (𝑃↑𝑁)) | |
23 | 22 | breq2d 5081 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁))) |
24 | 23 | rspcev 3552 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛)) |
25 | 3, 21, 24 | syl2anc 587 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛)) |
26 | 12, 18 | odcl2 18988 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
27 | 4, 16, 17, 26 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
28 | pcprmpw2 16467 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥))))) | |
29 | pcprmpw 16468 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥))))) | |
30 | 28, 29 | bitr4d 285 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
31 | 6, 27, 30 | syl2anc 587 | . . . . 5 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
32 | 25, 31 | mpbid 235 | . . . 4 ⊢ ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
33 | 32 | ralrimiva 3108 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
34 | 12, 18 | ispgp 19013 | . . 3 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
35 | 1, 2, 33, 34 | syl3anbrc 1345 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃↑𝑁)) → 𝑃 pGrp 𝐺) |
36 | 35 | ex 416 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃↑𝑁) → 𝑃 pGrp 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ∀wral 3064 ∃wrex 3065 Vcvv 3423 class class class wbr 5069 ‘cfv 6400 (class class class)co 7234 Fincfn 8649 ℕcn 11859 ℕ0cn0 12119 ↑cexp 13666 ♯chash 13928 ∥ cdvds 15847 ℙcprime 16260 pCnt cpc 16421 Basecbs 16792 Grpcgrp 18397 odcod 18948 pGrp cpgp 18950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-inf2 9285 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 ax-pre-sup 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-disj 5035 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-se 5527 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-isom 6409 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-2o 8226 df-oadd 8229 df-omul 8230 df-er 8414 df-ec 8416 df-qs 8420 df-map 8533 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-sup 9087 df-inf 9088 df-oi 9155 df-card 9584 df-acn 9587 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-div 11519 df-nn 11860 df-2 11922 df-3 11923 df-n0 12120 df-z 12206 df-uz 12468 df-q 12574 df-rp 12616 df-fz 13125 df-fzo 13268 df-fl 13396 df-mod 13474 df-seq 13606 df-exp 13667 df-hash 13929 df-cj 14694 df-re 14695 df-im 14696 df-sqrt 14830 df-abs 14831 df-clim 15081 df-sum 15282 df-dvds 15848 df-gcd 16086 df-prm 16261 df-pc 16422 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-0g 16978 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-grp 18400 df-minusg 18401 df-sbg 18402 df-mulg 18521 df-subg 18572 df-eqg 18574 df-od 18952 df-pgp 18954 |
This theorem is referenced by: pgp0 19017 pgpfi 19026 |
Copyright terms: Public domain | W3C validator |