MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpc Structured version   Visualization version   GIF version

Theorem pmltpc 24519
Description: Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.)
Assertion
Ref Expression
pmltpc ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑥,𝑦,𝐴   𝐹,𝑎,𝑏,𝑐,𝑥,𝑦

Proof of Theorem pmltpc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexanali 3191 . . . . . . . 8 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
21rexbii 3177 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
3 rexnal 3165 . . . . . . 7 (∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
42, 3bitri 274 . . . . . 6 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
5 rexanali 3191 . . . . . . . 8 (∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
65rexbii 3177 . . . . . . 7 (∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
7 rexnal 3165 . . . . . . . 8 (∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
8 breq1 5073 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
9 fveq2 6756 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
109breq2d 5082 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝑤) ≤ (𝐹𝑧) ↔ (𝐹𝑤) ≤ (𝐹𝑥)))
118, 10imbi12d 344 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ (𝑥𝑤 → (𝐹𝑤) ≤ (𝐹𝑥))))
12 breq2 5074 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
13 fveq2 6756 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
1413breq1d 5080 . . . . . . . . . 10 (𝑤 = 𝑦 → ((𝐹𝑤) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
1512, 14imbi12d 344 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑥𝑤 → (𝐹𝑤) ≤ (𝐹𝑥)) ↔ (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
1611, 15cbvral2vw 3385 . . . . . . . 8 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
177, 16xchbinx 333 . . . . . . 7 (∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
186, 17bitri 274 . . . . . 6 (∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
194, 18anbi12i 626 . . . . 5 ((∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
20 reeanv 3292 . . . . 5 (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))))
21 ioran 980 . . . . 5 (¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ↔ (¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
2219, 20, 213bitr4i 302 . . . 4 (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ ¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
23 reeanv 3292 . . . . . 6 (∃𝑦𝐴𝑤𝐴 ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))))
24 simplll 771 . . . . . . . . . 10 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹))
2524simpld 494 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝐹 ∈ (ℝ ↑pm ℝ))
2624simprd 495 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝐴 ⊆ dom 𝐹)
27 simpllr 772 . . . . . . . . . 10 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → (𝑥𝐴𝑧𝐴))
2827simpld 494 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑥𝐴)
29 simplrl 773 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑦𝐴)
3027simprd 495 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑧𝐴)
31 simplrr 774 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑤𝐴)
32 simprll 775 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑥𝑦)
33 simprrl 777 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑧𝑤)
34 simprlr 776 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ¬ (𝐹𝑥) ≤ (𝐹𝑦))
35 simprrr 778 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ¬ (𝐹𝑤) ≤ (𝐹𝑧))
3625, 26, 28, 29, 30, 31, 32, 33, 34, 35pmltpclem2 24518 . . . . . . . 8 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
3736ex 412 . . . . . . 7 ((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) → (((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
3837rexlimdvva 3222 . . . . . 6 (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) → (∃𝑦𝐴𝑤𝐴 ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
3923, 38syl5bir 242 . . . . 5 (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) → ((∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4039rexlimdvva 3222 . . . 4 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4122, 40syl5bir 242 . . 3 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4241orrd 859 . 2 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
43 df-3or 1086 . 2 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))) ↔ ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4442, 43sylibr 233 1 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3o 1084  w3a 1085  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  pm cpm 8574  cr 10801   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator