MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpc Structured version   Visualization version   GIF version

Theorem pmltpc 25371
Description: Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.)
Assertion
Ref Expression
pmltpc ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑥,𝑦,𝐴   𝐹,𝑎,𝑏,𝑐,𝑥,𝑦

Proof of Theorem pmltpc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexanali 3084 . . . . . . . 8 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
21rexbii 3077 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
3 rexnal 3082 . . . . . . 7 (∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
42, 3bitri 275 . . . . . 6 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
5 rexanali 3084 . . . . . . . 8 (∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
65rexbii 3077 . . . . . . 7 (∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
7 rexnal 3082 . . . . . . . 8 (∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
8 breq1 5092 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
9 fveq2 6817 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
109breq2d 5101 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝑤) ≤ (𝐹𝑧) ↔ (𝐹𝑤) ≤ (𝐹𝑥)))
118, 10imbi12d 344 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ (𝑥𝑤 → (𝐹𝑤) ≤ (𝐹𝑥))))
12 breq2 5093 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
13 fveq2 6817 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
1413breq1d 5099 . . . . . . . . . 10 (𝑤 = 𝑦 → ((𝐹𝑤) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
1512, 14imbi12d 344 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑥𝑤 → (𝐹𝑤) ≤ (𝐹𝑥)) ↔ (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
1611, 15cbvral2vw 3212 . . . . . . . 8 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
177, 16xchbinx 334 . . . . . . 7 (∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
186, 17bitri 275 . . . . . 6 (∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
194, 18anbi12i 628 . . . . 5 ((∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
20 reeanv 3202 . . . . 5 (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))))
21 ioran 985 . . . . 5 (¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ↔ (¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
2219, 20, 213bitr4i 303 . . . 4 (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ ¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
23 reeanv 3202 . . . . . 6 (∃𝑦𝐴𝑤𝐴 ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))))
24 simplll 774 . . . . . . . . . 10 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹))
2524simpld 494 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝐹 ∈ (ℝ ↑pm ℝ))
2624simprd 495 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝐴 ⊆ dom 𝐹)
27 simpllr 775 . . . . . . . . . 10 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → (𝑥𝐴𝑧𝐴))
2827simpld 494 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑥𝐴)
29 simplrl 776 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑦𝐴)
3027simprd 495 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑧𝐴)
31 simplrr 777 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑤𝐴)
32 simprll 778 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑥𝑦)
33 simprrl 780 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑧𝑤)
34 simprlr 779 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ¬ (𝐹𝑥) ≤ (𝐹𝑦))
35 simprrr 781 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ¬ (𝐹𝑤) ≤ (𝐹𝑧))
3625, 26, 28, 29, 30, 31, 32, 33, 34, 35pmltpclem2 25370 . . . . . . . 8 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
3736ex 412 . . . . . . 7 ((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) → (((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
3837rexlimdvva 3187 . . . . . 6 (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) → (∃𝑦𝐴𝑤𝐴 ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
3923, 38biimtrrid 243 . . . . 5 (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) → ((∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4039rexlimdvva 3187 . . . 4 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4122, 40biimtrrid 243 . . 3 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4241orrd 863 . 2 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
43 df-3or 1087 . 2 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))) ↔ ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4442, 43sylibr 234 1 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085  w3a 1086  wcel 2110  wral 3045  wrex 3054  wss 3900   class class class wbr 5089  dom cdm 5614  cfv 6477  (class class class)co 7341  pm cpm 8746  cr 10997   < clt 11138  cle 11139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-pre-lttri 11072  ax-pre-lttrn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator