Step | Hyp | Ref
| Expression |
1 | | rexanali 3184 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
2 | 1 | rexbii 3170 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
3 | | rexnal 3160 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
4 | 2, 3 | bitri 278 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
5 | | rexanali 3184 |
. . . . . . . 8
⊢
(∃𝑤 ∈
𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)) ↔ ¬ ∀𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
6 | 5 | rexbii 3170 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝐴 ∃𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)) ↔ ∃𝑧 ∈ 𝐴 ¬ ∀𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
7 | | rexnal 3160 |
. . . . . . . 8
⊢
(∃𝑧 ∈
𝐴 ¬ ∀𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 → (𝐹‘𝑤) ≤ (𝐹‘𝑧)) ↔ ¬ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 → (𝐹‘𝑤) ≤ (𝐹‘𝑧))) |
8 | | breq1 5056 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 ≤ 𝑤 ↔ 𝑥 ≤ 𝑤)) |
9 | | fveq2 6717 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
10 | 9 | breq2d 5065 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → ((𝐹‘𝑤) ≤ (𝐹‘𝑧) ↔ (𝐹‘𝑤) ≤ (𝐹‘𝑥))) |
11 | 8, 10 | imbi12d 348 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → ((𝑧 ≤ 𝑤 → (𝐹‘𝑤) ≤ (𝐹‘𝑧)) ↔ (𝑥 ≤ 𝑤 → (𝐹‘𝑤) ≤ (𝐹‘𝑥)))) |
12 | | breq2 5057 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑦)) |
13 | | fveq2 6717 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (𝐹‘𝑤) = (𝐹‘𝑦)) |
14 | 13 | breq1d 5063 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → ((𝐹‘𝑤) ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
15 | 12, 14 | imbi12d 348 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝑥 ≤ 𝑤 → (𝐹‘𝑤) ≤ (𝐹‘𝑥)) ↔ (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥)))) |
16 | 11, 15 | cbvral2vw 3371 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 → (𝐹‘𝑤) ≤ (𝐹‘𝑧)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
17 | 7, 16 | xchbinx 337 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝐴 ¬ ∀𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 → (𝐹‘𝑤) ≤ (𝐹‘𝑧)) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
18 | 6, 17 | bitri 278 |
. . . . . 6
⊢
(∃𝑧 ∈
𝐴 ∃𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
19 | 4, 18 | anbi12i 630 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) ↔ (¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥)))) |
20 | | reeanv 3279 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 ∃𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ ∃𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) |
21 | | ioran 984 |
. . . . 5
⊢ (¬
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) ↔ (¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥)))) |
22 | 19, 20, 21 | 3bitr4i 306 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ∃𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ ∃𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) ↔ ¬ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥)))) |
23 | | reeanv 3279 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) ↔ (∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ ∃𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) |
24 | | simplll 775 |
. . . . . . . . . 10
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → (𝐹 ∈ (ℝ ↑pm
ℝ) ∧ 𝐴 ⊆
dom 𝐹)) |
25 | 24 | simpld 498 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → 𝐹 ∈ (ℝ ↑pm
ℝ)) |
26 | 24 | simprd 499 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → 𝐴 ⊆ dom 𝐹) |
27 | | simpllr 776 |
. . . . . . . . . 10
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
28 | 27 | simpld 498 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → 𝑥 ∈ 𝐴) |
29 | | simplrl 777 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → 𝑦 ∈ 𝐴) |
30 | 27 | simprd 499 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → 𝑧 ∈ 𝐴) |
31 | | simplrr 778 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → 𝑤 ∈ 𝐴) |
32 | | simprll 779 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → 𝑥 ≤ 𝑦) |
33 | | simprrl 781 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → 𝑧 ≤ 𝑤) |
34 | | simprlr 780 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
35 | | simprrr 782 |
. . . . . . . . 9
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)) |
36 | 25, 26, 28, 29, 30, 31, 32, 33, 34, 35 | pmltpclem2 24346 |
. . . . . . . 8
⊢
(((((𝐹 ∈
(ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧)))) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
37 | 36 | ex 416 |
. . . . . . 7
⊢ ((((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |
38 | 37 | rexlimdvva 3213 |
. . . . . 6
⊢ (((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (∃𝑦 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |
39 | 23, 38 | syl5bir 246 |
. . . . 5
⊢ (((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ ∃𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |
40 | 39 | rexlimdvva 3213 |
. . . 4
⊢ ((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 ∧ ¬ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∧ ∃𝑤 ∈ 𝐴 (𝑧 ≤ 𝑤 ∧ ¬ (𝐹‘𝑤) ≤ (𝐹‘𝑧))) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |
41 | 22, 40 | syl5bir 246 |
. . 3
⊢ ((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (¬ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |
42 | 41 | orrd 863 |
. 2
⊢ ((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) ∨ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |
43 | | df-3or 1090 |
. 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥)) ∨ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) ∨ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |
44 | 42, 43 | sylibr 237 |
1
⊢ ((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥)) ∨ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) |