MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpc Structured version   Visualization version   GIF version

Theorem pmltpc 24347
Description: Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.)
Assertion
Ref Expression
pmltpc ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑥,𝑦,𝐴   𝐹,𝑎,𝑏,𝑐,𝑥,𝑦

Proof of Theorem pmltpc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexanali 3184 . . . . . . . 8 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
21rexbii 3170 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
3 rexnal 3160 . . . . . . 7 (∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
42, 3bitri 278 . . . . . 6 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
5 rexanali 3184 . . . . . . . 8 (∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
65rexbii 3170 . . . . . . 7 (∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
7 rexnal 3160 . . . . . . . 8 (∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
8 breq1 5056 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
9 fveq2 6717 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
109breq2d 5065 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝑤) ≤ (𝐹𝑧) ↔ (𝐹𝑤) ≤ (𝐹𝑥)))
118, 10imbi12d 348 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ (𝑥𝑤 → (𝐹𝑤) ≤ (𝐹𝑥))))
12 breq2 5057 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
13 fveq2 6717 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
1413breq1d 5063 . . . . . . . . . 10 (𝑤 = 𝑦 → ((𝐹𝑤) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
1512, 14imbi12d 348 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑥𝑤 → (𝐹𝑤) ≤ (𝐹𝑥)) ↔ (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
1611, 15cbvral2vw 3371 . . . . . . . 8 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
177, 16xchbinx 337 . . . . . . 7 (∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
186, 17bitri 278 . . . . . 6 (∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
194, 18anbi12i 630 . . . . 5 ((∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
20 reeanv 3279 . . . . 5 (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))))
21 ioran 984 . . . . 5 (¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ↔ (¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
2219, 20, 213bitr4i 306 . . . 4 (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ ¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
23 reeanv 3279 . . . . . 6 (∃𝑦𝐴𝑤𝐴 ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))))
24 simplll 775 . . . . . . . . . 10 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹))
2524simpld 498 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝐹 ∈ (ℝ ↑pm ℝ))
2624simprd 499 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝐴 ⊆ dom 𝐹)
27 simpllr 776 . . . . . . . . . 10 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → (𝑥𝐴𝑧𝐴))
2827simpld 498 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑥𝐴)
29 simplrl 777 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑦𝐴)
3027simprd 499 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑧𝐴)
31 simplrr 778 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑤𝐴)
32 simprll 779 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑥𝑦)
33 simprrl 781 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑧𝑤)
34 simprlr 780 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ¬ (𝐹𝑥) ≤ (𝐹𝑦))
35 simprrr 782 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ¬ (𝐹𝑤) ≤ (𝐹𝑧))
3625, 26, 28, 29, 30, 31, 32, 33, 34, 35pmltpclem2 24346 . . . . . . . 8 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
3736ex 416 . . . . . . 7 ((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) → (((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
3837rexlimdvva 3213 . . . . . 6 (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) → (∃𝑦𝐴𝑤𝐴 ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
3923, 38syl5bir 246 . . . . 5 (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) → ((∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4039rexlimdvva 3213 . . . 4 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4122, 40syl5bir 246 . . 3 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4241orrd 863 . 2 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
43 df-3or 1090 . 2 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))) ↔ ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4442, 43sylibr 237 1 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847  w3o 1088  w3a 1089  wcel 2110  wral 3061  wrex 3062  wss 3866   class class class wbr 5053  dom cdm 5551  cfv 6380  (class class class)co 7213  pm cpm 8509  cr 10728   < clt 10867  cle 10868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator