Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl33anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl33anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl33anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl33anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 4, 5, 6, 7, 8 | syl13anc 1370 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: initoeu2lem2 17646 mdetunilem9 21677 mdetuni0 21678 xmetrtri 23416 bl2in 23461 blhalf 23466 blssps 23485 blss 23486 blcld 23567 methaus 23582 metdstri 23920 metdscnlem 23924 metnrmlem3 23930 xlebnum 24034 pmltpclem1 24517 colinearalglem2 27178 axlowdim 27232 ssbnd 35873 totbndbnd 35874 heiborlem6 35901 2atm 37468 lplncvrlvol2 37556 dalem19 37623 paddasslem9 37769 pclclN 37832 pclfinN 37841 pclfinclN 37891 pexmidlem8N 37918 trlval3 38128 cdleme22b 38282 cdlemefr29bpre0N 38347 cdlemefr29clN 38348 cdlemefr32fvaN 38350 cdlemefr32fva1 38351 cdlemg31b0N 38635 cdlemg31b0a 38636 cdlemh 38758 dihmeetlem16N 39263 dihmeetlem18N 39265 dihmeetlem19N 39266 dihmeetlem20N 39267 hoidmvlelem1 44023 |
Copyright terms: Public domain | W3C validator |