![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl33anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl33anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl33anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl33anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 4, 5, 6, 7, 8 | syl13anc 1371 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: xpord3inddlem 8178 initoeu2lem2 18069 mdetunilem9 22642 mdetuni0 22643 xmetrtri 24381 bl2in 24426 blhalf 24431 blssps 24450 blss 24451 blcld 24534 methaus 24549 metdstri 24887 metdscnlem 24891 metnrmlem3 24897 xlebnum 25011 pmltpclem1 25497 colinearalglem2 28937 axlowdim 28991 ssbnd 37775 totbndbnd 37776 heiborlem6 37803 2atm 39510 lplncvrlvol2 39598 dalem19 39665 paddasslem9 39811 pclclN 39874 pclfinN 39883 pclfinclN 39933 pexmidlem8N 39960 trlval3 40170 cdleme22b 40324 cdlemefr29bpre0N 40389 cdlemefr29clN 40390 cdlemefr32fvaN 40392 cdlemefr32fva1 40393 cdlemg31b0N 40677 cdlemg31b0a 40678 cdlemh 40800 dihmeetlem16N 41305 dihmeetlem18N 41307 dihmeetlem19N 41308 dihmeetlem20N 41309 hoidmvlelem1 46551 |
Copyright terms: Public domain | W3C validator |