| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl33anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl33anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl33anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl33anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 4, 5, 6, 7, 8 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: xpord3inddlem 8133 initoeu2lem2 17977 mdetunilem9 22507 mdetuni0 22508 xmetrtri 24243 bl2in 24288 blhalf 24293 blssps 24312 blss 24313 blcld 24393 methaus 24408 metdstri 24740 metdscnlem 24744 metnrmlem3 24750 xlebnum 24864 pmltpclem1 25349 colinearalglem2 28834 axlowdim 28888 ssbnd 37782 totbndbnd 37783 heiborlem6 37810 2atm 39521 lplncvrlvol2 39609 dalem19 39676 paddasslem9 39822 pclclN 39885 pclfinN 39894 pclfinclN 39944 pexmidlem8N 39971 trlval3 40181 cdleme22b 40335 cdlemefr29bpre0N 40400 cdlemefr29clN 40401 cdlemefr32fvaN 40403 cdlemefr32fva1 40404 cdlemg31b0N 40688 cdlemg31b0a 40689 cdlemh 40811 dihmeetlem16N 41316 dihmeetlem18N 41318 dihmeetlem19N 41319 dihmeetlem20N 41320 hoidmvlelem1 46593 |
| Copyright terms: Public domain | W3C validator |