| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl33anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl33anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl33anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl33anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 4, 5, 6, 7, 8 | syl13anc 1373 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: xpord3inddlem 8161 initoeu2lem2 18032 mdetunilem9 22575 mdetuni0 22576 xmetrtri 24311 bl2in 24356 blhalf 24361 blssps 24380 blss 24381 blcld 24463 methaus 24478 metdstri 24810 metdscnlem 24814 metnrmlem3 24820 xlebnum 24934 pmltpclem1 25420 colinearalglem2 28853 axlowdim 28907 ssbnd 37770 totbndbnd 37771 heiborlem6 37798 2atm 39504 lplncvrlvol2 39592 dalem19 39659 paddasslem9 39805 pclclN 39868 pclfinN 39877 pclfinclN 39927 pexmidlem8N 39954 trlval3 40164 cdleme22b 40318 cdlemefr29bpre0N 40383 cdlemefr29clN 40384 cdlemefr32fvaN 40386 cdlemefr32fva1 40387 cdlemg31b0N 40671 cdlemg31b0a 40672 cdlemh 40794 dihmeetlem16N 41299 dihmeetlem18N 41301 dihmeetlem19N 41302 dihmeetlem20N 41303 hoidmvlelem1 46582 |
| Copyright terms: Public domain | W3C validator |