MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl33anc Structured version   Visualization version   GIF version

Theorem syl33anc 1387
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl33anc.7 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl33anc (𝜑𝜎)

Proof of Theorem syl33anc
StepHypRef Expression
1 syl3anc.1 . . 3 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
3 syl3anc.3 . . 3 (𝜑𝜃)
41, 2, 33jca 1128 . 2 (𝜑 → (𝜓𝜒𝜃))
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl33anc.7 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
94, 5, 6, 7, 8syl13anc 1374 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  xpord3inddlem  8094  initoeu2lem2  17940  mdetunilem9  22523  mdetuni0  22524  xmetrtri  24259  bl2in  24304  blhalf  24309  blssps  24328  blss  24329  blcld  24409  methaus  24424  metdstri  24756  metdscnlem  24760  metnrmlem3  24766  xlebnum  24880  pmltpclem1  25365  colinearalglem2  28870  axlowdim  28924  ssbnd  37767  totbndbnd  37768  heiborlem6  37795  2atm  39506  lplncvrlvol2  39594  dalem19  39661  paddasslem9  39807  pclclN  39870  pclfinN  39879  pclfinclN  39929  pexmidlem8N  39956  trlval3  40166  cdleme22b  40320  cdlemefr29bpre0N  40385  cdlemefr29clN  40386  cdlemefr32fvaN  40388  cdlemefr32fva1  40389  cdlemg31b0N  40673  cdlemg31b0a  40674  cdlemh  40796  dihmeetlem16N  41301  dihmeetlem18N  41303  dihmeetlem19N  41304  dihmeetlem20N  41305  hoidmvlelem1  46577
  Copyright terms: Public domain W3C validator