| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl33anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl33anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl33anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl33anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 4, 5, 6, 7, 8 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: xpord3inddlem 8094 initoeu2lem2 17940 mdetunilem9 22523 mdetuni0 22524 xmetrtri 24259 bl2in 24304 blhalf 24309 blssps 24328 blss 24329 blcld 24409 methaus 24424 metdstri 24756 metdscnlem 24760 metnrmlem3 24766 xlebnum 24880 pmltpclem1 25365 colinearalglem2 28870 axlowdim 28924 ssbnd 37767 totbndbnd 37768 heiborlem6 37795 2atm 39506 lplncvrlvol2 39594 dalem19 39661 paddasslem9 39807 pclclN 39870 pclfinN 39879 pclfinclN 39929 pexmidlem8N 39956 trlval3 40166 cdleme22b 40320 cdlemefr29bpre0N 40385 cdlemefr29clN 40386 cdlemefr32fvaN 40388 cdlemefr32fva1 40389 cdlemg31b0N 40673 cdlemg31b0a 40674 cdlemh 40796 dihmeetlem16N 41301 dihmeetlem18N 41303 dihmeetlem19N 41304 dihmeetlem20N 41305 hoidmvlelem1 46577 |
| Copyright terms: Public domain | W3C validator |