MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl33anc Structured version   Visualization version   GIF version

Theorem syl33anc 1385
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl33anc.7 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl33anc (𝜑𝜎)

Proof of Theorem syl33anc
StepHypRef Expression
1 syl3anc.1 . . 3 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
3 syl3anc.3 . . 3 (𝜑𝜃)
41, 2, 33jca 1128 . 2 (𝜑 → (𝜓𝜒𝜃))
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl33anc.7 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
94, 5, 6, 7, 8syl13anc 1372 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  xpord3inddlem  8139  initoeu2lem2  17964  mdetunilem9  22121  mdetuni0  22122  xmetrtri  23860  bl2in  23905  blhalf  23910  blssps  23929  blss  23930  blcld  24013  methaus  24028  metdstri  24366  metdscnlem  24370  metnrmlem3  24376  xlebnum  24480  pmltpclem1  24964  colinearalglem2  28162  axlowdim  28216  ssbnd  36651  totbndbnd  36652  heiborlem6  36679  2atm  38393  lplncvrlvol2  38481  dalem19  38548  paddasslem9  38694  pclclN  38757  pclfinN  38766  pclfinclN  38816  pexmidlem8N  38843  trlval3  39053  cdleme22b  39207  cdlemefr29bpre0N  39272  cdlemefr29clN  39273  cdlemefr32fvaN  39275  cdlemefr32fva1  39276  cdlemg31b0N  39560  cdlemg31b0a  39561  cdlemh  39683  dihmeetlem16N  40188  dihmeetlem18N  40190  dihmeetlem19N  40191  dihmeetlem20N  40192  hoidmvlelem1  45301
  Copyright terms: Public domain W3C validator