| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl33anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl33anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl33anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl33anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 4, 5, 6, 7, 8 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: xpord3inddlem 8136 initoeu2lem2 17984 mdetunilem9 22514 mdetuni0 22515 xmetrtri 24250 bl2in 24295 blhalf 24300 blssps 24319 blss 24320 blcld 24400 methaus 24415 metdstri 24747 metdscnlem 24751 metnrmlem3 24757 xlebnum 24871 pmltpclem1 25356 colinearalglem2 28841 axlowdim 28895 ssbnd 37789 totbndbnd 37790 heiborlem6 37817 2atm 39528 lplncvrlvol2 39616 dalem19 39683 paddasslem9 39829 pclclN 39892 pclfinN 39901 pclfinclN 39951 pexmidlem8N 39978 trlval3 40188 cdleme22b 40342 cdlemefr29bpre0N 40407 cdlemefr29clN 40408 cdlemefr32fvaN 40410 cdlemefr32fva1 40411 cdlemg31b0N 40695 cdlemg31b0a 40696 cdlemh 40818 dihmeetlem16N 41323 dihmeetlem18N 41325 dihmeetlem19N 41326 dihmeetlem20N 41327 hoidmvlelem1 46600 |
| Copyright terms: Public domain | W3C validator |