![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl33anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl33anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl33anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl33anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 4, 5, 6, 7, 8 | syl13anc 1372 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: xpord3inddlem 8195 initoeu2lem2 18082 mdetunilem9 22647 mdetuni0 22648 xmetrtri 24386 bl2in 24431 blhalf 24436 blssps 24455 blss 24456 blcld 24539 methaus 24554 metdstri 24892 metdscnlem 24896 metnrmlem3 24902 xlebnum 25016 pmltpclem1 25502 colinearalglem2 28940 axlowdim 28994 ssbnd 37748 totbndbnd 37749 heiborlem6 37776 2atm 39484 lplncvrlvol2 39572 dalem19 39639 paddasslem9 39785 pclclN 39848 pclfinN 39857 pclfinclN 39907 pexmidlem8N 39934 trlval3 40144 cdleme22b 40298 cdlemefr29bpre0N 40363 cdlemefr29clN 40364 cdlemefr32fvaN 40366 cdlemefr32fva1 40367 cdlemg31b0N 40651 cdlemg31b0a 40652 cdlemh 40774 dihmeetlem16N 41279 dihmeetlem18N 41281 dihmeetlem19N 41282 dihmeetlem20N 41283 hoidmvlelem1 46516 |
Copyright terms: Public domain | W3C validator |