Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl33anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl33anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl33anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl33anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 4, 5, 6, 7, 8 | syl13anc 1371 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: initoeu2lem2 17730 mdetunilem9 21769 mdetuni0 21770 xmetrtri 23508 bl2in 23553 blhalf 23558 blssps 23577 blss 23578 blcld 23661 methaus 23676 metdstri 24014 metdscnlem 24018 metnrmlem3 24024 xlebnum 24128 pmltpclem1 24612 colinearalglem2 27275 axlowdim 27329 ssbnd 35946 totbndbnd 35947 heiborlem6 35974 2atm 37541 lplncvrlvol2 37629 dalem19 37696 paddasslem9 37842 pclclN 37905 pclfinN 37914 pclfinclN 37964 pexmidlem8N 37991 trlval3 38201 cdleme22b 38355 cdlemefr29bpre0N 38420 cdlemefr29clN 38421 cdlemefr32fvaN 38423 cdlemefr32fva1 38424 cdlemg31b0N 38708 cdlemg31b0a 38709 cdlemh 38831 dihmeetlem16N 39336 dihmeetlem18N 39338 dihmeetlem19N 39339 dihmeetlem20N 39340 hoidmvlelem1 44133 |
Copyright terms: Public domain | W3C validator |