| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl33anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl33anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl33anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl33anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 4, 5, 6, 7, 8 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: xpord3inddlem 8084 initoeu2lem2 17919 mdetunilem9 22533 mdetuni0 22534 xmetrtri 24268 bl2in 24313 blhalf 24318 blssps 24337 blss 24338 blcld 24418 methaus 24433 metdstri 24765 metdscnlem 24769 metnrmlem3 24775 xlebnum 24889 pmltpclem1 25374 colinearalglem2 28883 axlowdim 28937 ssbnd 37827 totbndbnd 37828 heiborlem6 37855 2atm 39565 lplncvrlvol2 39653 dalem19 39720 paddasslem9 39866 pclclN 39929 pclfinN 39938 pclfinclN 39988 pexmidlem8N 40015 trlval3 40225 cdleme22b 40379 cdlemefr29bpre0N 40444 cdlemefr29clN 40445 cdlemefr32fvaN 40447 cdlemefr32fva1 40448 cdlemg31b0N 40732 cdlemg31b0a 40733 cdlemh 40855 dihmeetlem16N 41360 dihmeetlem18N 41362 dihmeetlem19N 41363 dihmeetlem20N 41364 hoidmvlelem1 46632 |
| Copyright terms: Public domain | W3C validator |