MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpclem2 Structured version   Visualization version   GIF version

Theorem pmltpclem2 24613
Description: Lemma for pmltpc 24614. (Contributed by Mario Carneiro, 1-Jul-2014.)
Hypotheses
Ref Expression
pmltpc.1 (𝜑𝐹 ∈ (ℝ ↑pm ℝ))
pmltpc.2 (𝜑𝐴 ⊆ dom 𝐹)
pmltpc.3 (𝜑𝑈𝐴)
pmltpc.4 (𝜑𝑉𝐴)
pmltpc.5 (𝜑𝑊𝐴)
pmltpc.6 (𝜑𝑋𝐴)
pmltpc.7 (𝜑𝑈𝑉)
pmltpc.8 (𝜑𝑊𝑋)
pmltpc.9 (𝜑 → ¬ (𝐹𝑈) ≤ (𝐹𝑉))
pmltpc.10 (𝜑 → ¬ (𝐹𝑋) ≤ (𝐹𝑊))
Assertion
Ref Expression
pmltpclem2 (𝜑 → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝐴   𝐹,𝑎,𝑏,𝑐   𝑉,𝑏,𝑐   𝑈,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐   𝑋,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝑉(𝑎)   𝑋(𝑎)

Proof of Theorem pmltpclem2
StepHypRef Expression
1 pmltpc.5 . . . . 5 (𝜑𝑊𝐴)
21ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑊𝐴)
3 pmltpc.3 . . . . 5 (𝜑𝑈𝐴)
43ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑈𝐴)
5 pmltpc.4 . . . . 5 (𝜑𝑉𝐴)
65ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑉𝐴)
7 simpr 485 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑊 < 𝑈)
8 pmltpc.1 . . . . . . . . 9 (𝜑𝐹 ∈ (ℝ ↑pm ℝ))
9 reex 10962 . . . . . . . . . 10 ℝ ∈ V
109, 9elpm2 8662 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
118, 10sylib 217 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
1211simprd 496 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ ℝ)
13 pmltpc.2 . . . . . . . 8 (𝜑𝐴 ⊆ dom 𝐹)
1413, 3sseldd 3922 . . . . . . 7 (𝜑𝑈 ∈ dom 𝐹)
1512, 14sseldd 3922 . . . . . 6 (𝜑𝑈 ∈ ℝ)
1613, 5sseldd 3922 . . . . . . 7 (𝜑𝑉 ∈ dom 𝐹)
1712, 16sseldd 3922 . . . . . 6 (𝜑𝑉 ∈ ℝ)
18 pmltpc.7 . . . . . 6 (𝜑𝑈𝑉)
1911simpld 495 . . . . . . . . 9 (𝜑𝐹:dom 𝐹⟶ℝ)
2019, 16ffvelrnd 6962 . . . . . . . 8 (𝜑 → (𝐹𝑉) ∈ ℝ)
21 pmltpc.9 . . . . . . . . 9 (𝜑 → ¬ (𝐹𝑈) ≤ (𝐹𝑉))
2219, 14ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → (𝐹𝑈) ∈ ℝ)
2320, 22ltnled 11122 . . . . . . . . 9 (𝜑 → ((𝐹𝑉) < (𝐹𝑈) ↔ ¬ (𝐹𝑈) ≤ (𝐹𝑉)))
2421, 23mpbird 256 . . . . . . . 8 (𝜑 → (𝐹𝑉) < (𝐹𝑈))
2520, 24gtned 11110 . . . . . . 7 (𝜑 → (𝐹𝑈) ≠ (𝐹𝑉))
26 fveq2 6774 . . . . . . . . 9 (𝑉 = 𝑈 → (𝐹𝑉) = (𝐹𝑈))
2726eqcomd 2744 . . . . . . . 8 (𝑉 = 𝑈 → (𝐹𝑈) = (𝐹𝑉))
2827necon3i 2976 . . . . . . 7 ((𝐹𝑈) ≠ (𝐹𝑉) → 𝑉𝑈)
2925, 28syl 17 . . . . . 6 (𝜑𝑉𝑈)
3015, 17, 18, 29leneltd 11129 . . . . 5 (𝜑𝑈 < 𝑉)
3130ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑈 < 𝑉)
32 simplr 766 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (𝐹𝑊) < (𝐹𝑈))
3324ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (𝐹𝑉) < (𝐹𝑈))
3432, 33jca 512 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑈)))
3534orcd 870 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑈)) ∨ ((𝐹𝑈) < (𝐹𝑊) ∧ (𝐹𝑈) < (𝐹𝑉))))
362, 4, 6, 7, 31, 35pmltpclem1 24612 . . 3 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
373ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈𝐴)
381ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊𝐴)
39 pmltpc.6 . . . . 5 (𝜑𝑋𝐴)
4039ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑋𝐴)
4115ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈 ∈ ℝ)
4213, 1sseldd 3922 . . . . . . 7 (𝜑𝑊 ∈ dom 𝐹)
4312, 42sseldd 3922 . . . . . 6 (𝜑𝑊 ∈ ℝ)
4443ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊 ∈ ℝ)
45 simpr 485 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈𝑊)
4619, 42ffvelrnd 6962 . . . . . . . 8 (𝜑 → (𝐹𝑊) ∈ ℝ)
4746ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) ∈ ℝ)
48 simplr 766 . . . . . . 7 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) < (𝐹𝑈))
4947, 48gtned 11110 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑈) ≠ (𝐹𝑊))
50 fveq2 6774 . . . . . . . 8 (𝑊 = 𝑈 → (𝐹𝑊) = (𝐹𝑈))
5150eqcomd 2744 . . . . . . 7 (𝑊 = 𝑈 → (𝐹𝑈) = (𝐹𝑊))
5251necon3i 2976 . . . . . 6 ((𝐹𝑈) ≠ (𝐹𝑊) → 𝑊𝑈)
5349, 52syl 17 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊𝑈)
5441, 44, 45, 53leneltd 11129 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈 < 𝑊)
5513, 39sseldd 3922 . . . . . . 7 (𝜑𝑋 ∈ dom 𝐹)
5612, 55sseldd 3922 . . . . . 6 (𝜑𝑋 ∈ ℝ)
57 pmltpc.8 . . . . . 6 (𝜑𝑊𝑋)
58 pmltpc.10 . . . . . . . . 9 (𝜑 → ¬ (𝐹𝑋) ≤ (𝐹𝑊))
5919, 55ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ℝ)
6046, 59ltnled 11122 . . . . . . . . 9 (𝜑 → ((𝐹𝑊) < (𝐹𝑋) ↔ ¬ (𝐹𝑋) ≤ (𝐹𝑊)))
6158, 60mpbird 256 . . . . . . . 8 (𝜑 → (𝐹𝑊) < (𝐹𝑋))
6246, 61gtned 11110 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ (𝐹𝑊))
63 fveq2 6774 . . . . . . . 8 (𝑋 = 𝑊 → (𝐹𝑋) = (𝐹𝑊))
6463necon3i 2976 . . . . . . 7 ((𝐹𝑋) ≠ (𝐹𝑊) → 𝑋𝑊)
6562, 64syl 17 . . . . . 6 (𝜑𝑋𝑊)
6643, 56, 57, 65leneltd 11129 . . . . 5 (𝜑𝑊 < 𝑋)
6766ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊 < 𝑋)
6861ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) < (𝐹𝑋))
6948, 68jca 512 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑊) < (𝐹𝑋)))
7069olcd 871 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (((𝐹𝑈) < (𝐹𝑊) ∧ (𝐹𝑋) < (𝐹𝑊)) ∨ ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑊) < (𝐹𝑋))))
7137, 38, 40, 54, 67, 70pmltpclem1 24612 . . 3 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
7243adantr 481 . . 3 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → 𝑊 ∈ ℝ)
7315adantr 481 . . 3 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → 𝑈 ∈ ℝ)
7436, 71, 72, 73ltlecasei 11083 . 2 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
753ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑈𝐴)
765ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑉𝐴)
7739ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑋𝐴)
7830ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑈 < 𝑉)
79 simpr 485 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑉 < 𝑋)
8024ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (𝐹𝑉) < (𝐹𝑈))
8120adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) ∈ ℝ)
8222adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) ∈ ℝ)
8359adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑋) ∈ ℝ)
8424adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) < (𝐹𝑈))
8546adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑊) ∈ ℝ)
86 simpr 485 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) ≤ (𝐹𝑊))
8761adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑊) < (𝐹𝑋))
8882, 85, 83, 86, 87lelttrd 11133 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) < (𝐹𝑋))
8981, 82, 83, 84, 88lttrd 11136 . . . . . . 7 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) < (𝐹𝑋))
9089adantr 481 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (𝐹𝑉) < (𝐹𝑋))
9180, 90jca 512 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → ((𝐹𝑉) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑋)))
9291olcd 871 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (((𝐹𝑈) < (𝐹𝑉) ∧ (𝐹𝑋) < (𝐹𝑉)) ∨ ((𝐹𝑉) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑋))))
9375, 76, 77, 78, 79, 92pmltpclem1 24612 . . 3 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
941ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑊𝐴)
9539ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋𝐴)
965ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉𝐴)
9766ad2antrr 723 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑊 < 𝑋)
9856ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋 ∈ ℝ)
9917ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉 ∈ ℝ)
100 simpr 485 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋𝑉)
10120ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑉) ∈ ℝ)
10289adantr 481 . . . . . . 7 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑉) < (𝐹𝑋))
103101, 102gtned 11110 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑋) ≠ (𝐹𝑉))
104 fveq2 6774 . . . . . . . 8 (𝑉 = 𝑋 → (𝐹𝑉) = (𝐹𝑋))
105104eqcomd 2744 . . . . . . 7 (𝑉 = 𝑋 → (𝐹𝑋) = (𝐹𝑉))
106105necon3i 2976 . . . . . 6 ((𝐹𝑋) ≠ (𝐹𝑉) → 𝑉𝑋)
107103, 106syl 17 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉𝑋)
10898, 99, 100, 107leneltd 11129 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋 < 𝑉)
10961ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑊) < (𝐹𝑋))
110109, 102jca 512 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → ((𝐹𝑊) < (𝐹𝑋) ∧ (𝐹𝑉) < (𝐹𝑋)))
111110orcd 870 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (((𝐹𝑊) < (𝐹𝑋) ∧ (𝐹𝑉) < (𝐹𝑋)) ∨ ((𝐹𝑋) < (𝐹𝑊) ∧ (𝐹𝑋) < (𝐹𝑉))))
11294, 95, 96, 97, 108, 111pmltpclem1 24612 . . 3 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
11317adantr 481 . . 3 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → 𝑉 ∈ ℝ)
11456adantr 481 . . 3 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → 𝑋 ∈ ℝ)
11593, 112, 113, 114ltlecasei 11083 . 2 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
11674, 115, 46, 22ltlecasei 11083 1 (𝜑 → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  wss 3887   class class class wbr 5074  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  pm cpm 8616  cr 10870   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  pmltpc  24614
  Copyright terms: Public domain W3C validator