MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpclem2 Structured version   Visualization version   GIF version

Theorem pmltpclem2 24053
Description: Lemma for pmltpc 24054. (Contributed by Mario Carneiro, 1-Jul-2014.)
Hypotheses
Ref Expression
pmltpc.1 (𝜑𝐹 ∈ (ℝ ↑pm ℝ))
pmltpc.2 (𝜑𝐴 ⊆ dom 𝐹)
pmltpc.3 (𝜑𝑈𝐴)
pmltpc.4 (𝜑𝑉𝐴)
pmltpc.5 (𝜑𝑊𝐴)
pmltpc.6 (𝜑𝑋𝐴)
pmltpc.7 (𝜑𝑈𝑉)
pmltpc.8 (𝜑𝑊𝑋)
pmltpc.9 (𝜑 → ¬ (𝐹𝑈) ≤ (𝐹𝑉))
pmltpc.10 (𝜑 → ¬ (𝐹𝑋) ≤ (𝐹𝑊))
Assertion
Ref Expression
pmltpclem2 (𝜑 → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝐴   𝐹,𝑎,𝑏,𝑐   𝑉,𝑏,𝑐   𝑈,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐   𝑋,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝑉(𝑎)   𝑋(𝑎)

Proof of Theorem pmltpclem2
StepHypRef Expression
1 pmltpc.5 . . . . 5 (𝜑𝑊𝐴)
21ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑊𝐴)
3 pmltpc.3 . . . . 5 (𝜑𝑈𝐴)
43ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑈𝐴)
5 pmltpc.4 . . . . 5 (𝜑𝑉𝐴)
65ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑉𝐴)
7 simpr 488 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑊 < 𝑈)
8 pmltpc.1 . . . . . . . . 9 (𝜑𝐹 ∈ (ℝ ↑pm ℝ))
9 reex 10617 . . . . . . . . . 10 ℝ ∈ V
109, 9elpm2 8421 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
118, 10sylib 221 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
1211simprd 499 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ ℝ)
13 pmltpc.2 . . . . . . . 8 (𝜑𝐴 ⊆ dom 𝐹)
1413, 3sseldd 3916 . . . . . . 7 (𝜑𝑈 ∈ dom 𝐹)
1512, 14sseldd 3916 . . . . . 6 (𝜑𝑈 ∈ ℝ)
1613, 5sseldd 3916 . . . . . . 7 (𝜑𝑉 ∈ dom 𝐹)
1712, 16sseldd 3916 . . . . . 6 (𝜑𝑉 ∈ ℝ)
18 pmltpc.7 . . . . . 6 (𝜑𝑈𝑉)
1911simpld 498 . . . . . . . . 9 (𝜑𝐹:dom 𝐹⟶ℝ)
2019, 16ffvelrnd 6829 . . . . . . . 8 (𝜑 → (𝐹𝑉) ∈ ℝ)
21 pmltpc.9 . . . . . . . . 9 (𝜑 → ¬ (𝐹𝑈) ≤ (𝐹𝑉))
2219, 14ffvelrnd 6829 . . . . . . . . . 10 (𝜑 → (𝐹𝑈) ∈ ℝ)
2320, 22ltnled 10776 . . . . . . . . 9 (𝜑 → ((𝐹𝑉) < (𝐹𝑈) ↔ ¬ (𝐹𝑈) ≤ (𝐹𝑉)))
2421, 23mpbird 260 . . . . . . . 8 (𝜑 → (𝐹𝑉) < (𝐹𝑈))
2520, 24gtned 10764 . . . . . . 7 (𝜑 → (𝐹𝑈) ≠ (𝐹𝑉))
26 fveq2 6645 . . . . . . . . 9 (𝑉 = 𝑈 → (𝐹𝑉) = (𝐹𝑈))
2726eqcomd 2804 . . . . . . . 8 (𝑉 = 𝑈 → (𝐹𝑈) = (𝐹𝑉))
2827necon3i 3019 . . . . . . 7 ((𝐹𝑈) ≠ (𝐹𝑉) → 𝑉𝑈)
2925, 28syl 17 . . . . . 6 (𝜑𝑉𝑈)
3015, 17, 18, 29leneltd 10783 . . . . 5 (𝜑𝑈 < 𝑉)
3130ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑈 < 𝑉)
32 simplr 768 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (𝐹𝑊) < (𝐹𝑈))
3324ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (𝐹𝑉) < (𝐹𝑈))
3432, 33jca 515 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑈)))
3534orcd 870 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑈)) ∨ ((𝐹𝑈) < (𝐹𝑊) ∧ (𝐹𝑈) < (𝐹𝑉))))
362, 4, 6, 7, 31, 35pmltpclem1 24052 . . 3 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
373ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈𝐴)
381ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊𝐴)
39 pmltpc.6 . . . . 5 (𝜑𝑋𝐴)
4039ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑋𝐴)
4115ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈 ∈ ℝ)
4213, 1sseldd 3916 . . . . . . 7 (𝜑𝑊 ∈ dom 𝐹)
4312, 42sseldd 3916 . . . . . 6 (𝜑𝑊 ∈ ℝ)
4443ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊 ∈ ℝ)
45 simpr 488 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈𝑊)
4619, 42ffvelrnd 6829 . . . . . . . 8 (𝜑 → (𝐹𝑊) ∈ ℝ)
4746ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) ∈ ℝ)
48 simplr 768 . . . . . . 7 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) < (𝐹𝑈))
4947, 48gtned 10764 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑈) ≠ (𝐹𝑊))
50 fveq2 6645 . . . . . . . 8 (𝑊 = 𝑈 → (𝐹𝑊) = (𝐹𝑈))
5150eqcomd 2804 . . . . . . 7 (𝑊 = 𝑈 → (𝐹𝑈) = (𝐹𝑊))
5251necon3i 3019 . . . . . 6 ((𝐹𝑈) ≠ (𝐹𝑊) → 𝑊𝑈)
5349, 52syl 17 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊𝑈)
5441, 44, 45, 53leneltd 10783 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈 < 𝑊)
5513, 39sseldd 3916 . . . . . . 7 (𝜑𝑋 ∈ dom 𝐹)
5612, 55sseldd 3916 . . . . . 6 (𝜑𝑋 ∈ ℝ)
57 pmltpc.8 . . . . . 6 (𝜑𝑊𝑋)
58 pmltpc.10 . . . . . . . . 9 (𝜑 → ¬ (𝐹𝑋) ≤ (𝐹𝑊))
5919, 55ffvelrnd 6829 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ℝ)
6046, 59ltnled 10776 . . . . . . . . 9 (𝜑 → ((𝐹𝑊) < (𝐹𝑋) ↔ ¬ (𝐹𝑋) ≤ (𝐹𝑊)))
6158, 60mpbird 260 . . . . . . . 8 (𝜑 → (𝐹𝑊) < (𝐹𝑋))
6246, 61gtned 10764 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ (𝐹𝑊))
63 fveq2 6645 . . . . . . . 8 (𝑋 = 𝑊 → (𝐹𝑋) = (𝐹𝑊))
6463necon3i 3019 . . . . . . 7 ((𝐹𝑋) ≠ (𝐹𝑊) → 𝑋𝑊)
6562, 64syl 17 . . . . . 6 (𝜑𝑋𝑊)
6643, 56, 57, 65leneltd 10783 . . . . 5 (𝜑𝑊 < 𝑋)
6766ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊 < 𝑋)
6861ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) < (𝐹𝑋))
6948, 68jca 515 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑊) < (𝐹𝑋)))
7069olcd 871 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (((𝐹𝑈) < (𝐹𝑊) ∧ (𝐹𝑋) < (𝐹𝑊)) ∨ ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑊) < (𝐹𝑋))))
7137, 38, 40, 54, 67, 70pmltpclem1 24052 . . 3 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
7243adantr 484 . . 3 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → 𝑊 ∈ ℝ)
7315adantr 484 . . 3 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → 𝑈 ∈ ℝ)
7436, 71, 72, 73ltlecasei 10737 . 2 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
753ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑈𝐴)
765ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑉𝐴)
7739ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑋𝐴)
7830ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑈 < 𝑉)
79 simpr 488 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑉 < 𝑋)
8024ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (𝐹𝑉) < (𝐹𝑈))
8120adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) ∈ ℝ)
8222adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) ∈ ℝ)
8359adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑋) ∈ ℝ)
8424adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) < (𝐹𝑈))
8546adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑊) ∈ ℝ)
86 simpr 488 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) ≤ (𝐹𝑊))
8761adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑊) < (𝐹𝑋))
8882, 85, 83, 86, 87lelttrd 10787 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) < (𝐹𝑋))
8981, 82, 83, 84, 88lttrd 10790 . . . . . . 7 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) < (𝐹𝑋))
9089adantr 484 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (𝐹𝑉) < (𝐹𝑋))
9180, 90jca 515 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → ((𝐹𝑉) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑋)))
9291olcd 871 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (((𝐹𝑈) < (𝐹𝑉) ∧ (𝐹𝑋) < (𝐹𝑉)) ∨ ((𝐹𝑉) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑋))))
9375, 76, 77, 78, 79, 92pmltpclem1 24052 . . 3 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
941ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑊𝐴)
9539ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋𝐴)
965ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉𝐴)
9766ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑊 < 𝑋)
9856ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋 ∈ ℝ)
9917ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉 ∈ ℝ)
100 simpr 488 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋𝑉)
10120ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑉) ∈ ℝ)
10289adantr 484 . . . . . . 7 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑉) < (𝐹𝑋))
103101, 102gtned 10764 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑋) ≠ (𝐹𝑉))
104 fveq2 6645 . . . . . . . 8 (𝑉 = 𝑋 → (𝐹𝑉) = (𝐹𝑋))
105104eqcomd 2804 . . . . . . 7 (𝑉 = 𝑋 → (𝐹𝑋) = (𝐹𝑉))
106105necon3i 3019 . . . . . 6 ((𝐹𝑋) ≠ (𝐹𝑉) → 𝑉𝑋)
107103, 106syl 17 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉𝑋)
10898, 99, 100, 107leneltd 10783 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋 < 𝑉)
10961ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑊) < (𝐹𝑋))
110109, 102jca 515 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → ((𝐹𝑊) < (𝐹𝑋) ∧ (𝐹𝑉) < (𝐹𝑋)))
111110orcd 870 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (((𝐹𝑊) < (𝐹𝑋) ∧ (𝐹𝑉) < (𝐹𝑋)) ∨ ((𝐹𝑋) < (𝐹𝑊) ∧ (𝐹𝑋) < (𝐹𝑉))))
11294, 95, 96, 97, 108, 111pmltpclem1 24052 . . 3 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
11317adantr 484 . . 3 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → 𝑉 ∈ ℝ)
11456adantr 484 . . 3 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → 𝑋 ∈ ℝ)
11593, 112, 113, 114ltlecasei 10737 . 2 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
11674, 115, 46, 22ltlecasei 10737 1 (𝜑 → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  wss 3881   class class class wbr 5030  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  pm cpm 8390  cr 10525   < clt 10664  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670
This theorem is referenced by:  pmltpc  24054
  Copyright terms: Public domain W3C validator