MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpclem2 Structured version   Visualization version   GIF version

Theorem pmltpclem2 25503
Description: Lemma for pmltpc 25504. (Contributed by Mario Carneiro, 1-Jul-2014.)
Hypotheses
Ref Expression
pmltpc.1 (𝜑𝐹 ∈ (ℝ ↑pm ℝ))
pmltpc.2 (𝜑𝐴 ⊆ dom 𝐹)
pmltpc.3 (𝜑𝑈𝐴)
pmltpc.4 (𝜑𝑉𝐴)
pmltpc.5 (𝜑𝑊𝐴)
pmltpc.6 (𝜑𝑋𝐴)
pmltpc.7 (𝜑𝑈𝑉)
pmltpc.8 (𝜑𝑊𝑋)
pmltpc.9 (𝜑 → ¬ (𝐹𝑈) ≤ (𝐹𝑉))
pmltpc.10 (𝜑 → ¬ (𝐹𝑋) ≤ (𝐹𝑊))
Assertion
Ref Expression
pmltpclem2 (𝜑 → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝐴   𝐹,𝑎,𝑏,𝑐   𝑉,𝑏,𝑐   𝑈,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐   𝑋,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝑉(𝑎)   𝑋(𝑎)

Proof of Theorem pmltpclem2
StepHypRef Expression
1 pmltpc.5 . . . . 5 (𝜑𝑊𝐴)
21ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑊𝐴)
3 pmltpc.3 . . . . 5 (𝜑𝑈𝐴)
43ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑈𝐴)
5 pmltpc.4 . . . . 5 (𝜑𝑉𝐴)
65ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑉𝐴)
7 simpr 484 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑊 < 𝑈)
8 pmltpc.1 . . . . . . . . 9 (𝜑𝐹 ∈ (ℝ ↑pm ℝ))
9 reex 11275 . . . . . . . . . 10 ℝ ∈ V
109, 9elpm2 8932 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
118, 10sylib 218 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
1211simprd 495 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ ℝ)
13 pmltpc.2 . . . . . . . 8 (𝜑𝐴 ⊆ dom 𝐹)
1413, 3sseldd 4009 . . . . . . 7 (𝜑𝑈 ∈ dom 𝐹)
1512, 14sseldd 4009 . . . . . 6 (𝜑𝑈 ∈ ℝ)
1613, 5sseldd 4009 . . . . . . 7 (𝜑𝑉 ∈ dom 𝐹)
1712, 16sseldd 4009 . . . . . 6 (𝜑𝑉 ∈ ℝ)
18 pmltpc.7 . . . . . 6 (𝜑𝑈𝑉)
1911simpld 494 . . . . . . . . 9 (𝜑𝐹:dom 𝐹⟶ℝ)
2019, 16ffvelcdmd 7119 . . . . . . . 8 (𝜑 → (𝐹𝑉) ∈ ℝ)
21 pmltpc.9 . . . . . . . . 9 (𝜑 → ¬ (𝐹𝑈) ≤ (𝐹𝑉))
2219, 14ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝐹𝑈) ∈ ℝ)
2320, 22ltnled 11437 . . . . . . . . 9 (𝜑 → ((𝐹𝑉) < (𝐹𝑈) ↔ ¬ (𝐹𝑈) ≤ (𝐹𝑉)))
2421, 23mpbird 257 . . . . . . . 8 (𝜑 → (𝐹𝑉) < (𝐹𝑈))
2520, 24gtned 11425 . . . . . . 7 (𝜑 → (𝐹𝑈) ≠ (𝐹𝑉))
26 fveq2 6920 . . . . . . . . 9 (𝑉 = 𝑈 → (𝐹𝑉) = (𝐹𝑈))
2726eqcomd 2746 . . . . . . . 8 (𝑉 = 𝑈 → (𝐹𝑈) = (𝐹𝑉))
2827necon3i 2979 . . . . . . 7 ((𝐹𝑈) ≠ (𝐹𝑉) → 𝑉𝑈)
2925, 28syl 17 . . . . . 6 (𝜑𝑉𝑈)
3015, 17, 18, 29leneltd 11444 . . . . 5 (𝜑𝑈 < 𝑉)
3130ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑈 < 𝑉)
32 simplr 768 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (𝐹𝑊) < (𝐹𝑈))
3324ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (𝐹𝑉) < (𝐹𝑈))
3432, 33jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑈)))
3534orcd 872 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑈)) ∨ ((𝐹𝑈) < (𝐹𝑊) ∧ (𝐹𝑈) < (𝐹𝑉))))
362, 4, 6, 7, 31, 35pmltpclem1 25502 . . 3 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
373ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈𝐴)
381ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊𝐴)
39 pmltpc.6 . . . . 5 (𝜑𝑋𝐴)
4039ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑋𝐴)
4115ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈 ∈ ℝ)
4213, 1sseldd 4009 . . . . . . 7 (𝜑𝑊 ∈ dom 𝐹)
4312, 42sseldd 4009 . . . . . 6 (𝜑𝑊 ∈ ℝ)
4443ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊 ∈ ℝ)
45 simpr 484 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈𝑊)
4619, 42ffvelcdmd 7119 . . . . . . . 8 (𝜑 → (𝐹𝑊) ∈ ℝ)
4746ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) ∈ ℝ)
48 simplr 768 . . . . . . 7 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) < (𝐹𝑈))
4947, 48gtned 11425 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑈) ≠ (𝐹𝑊))
50 fveq2 6920 . . . . . . . 8 (𝑊 = 𝑈 → (𝐹𝑊) = (𝐹𝑈))
5150eqcomd 2746 . . . . . . 7 (𝑊 = 𝑈 → (𝐹𝑈) = (𝐹𝑊))
5251necon3i 2979 . . . . . 6 ((𝐹𝑈) ≠ (𝐹𝑊) → 𝑊𝑈)
5349, 52syl 17 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊𝑈)
5441, 44, 45, 53leneltd 11444 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈 < 𝑊)
5513, 39sseldd 4009 . . . . . . 7 (𝜑𝑋 ∈ dom 𝐹)
5612, 55sseldd 4009 . . . . . 6 (𝜑𝑋 ∈ ℝ)
57 pmltpc.8 . . . . . 6 (𝜑𝑊𝑋)
58 pmltpc.10 . . . . . . . . 9 (𝜑 → ¬ (𝐹𝑋) ≤ (𝐹𝑊))
5919, 55ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ℝ)
6046, 59ltnled 11437 . . . . . . . . 9 (𝜑 → ((𝐹𝑊) < (𝐹𝑋) ↔ ¬ (𝐹𝑋) ≤ (𝐹𝑊)))
6158, 60mpbird 257 . . . . . . . 8 (𝜑 → (𝐹𝑊) < (𝐹𝑋))
6246, 61gtned 11425 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ (𝐹𝑊))
63 fveq2 6920 . . . . . . . 8 (𝑋 = 𝑊 → (𝐹𝑋) = (𝐹𝑊))
6463necon3i 2979 . . . . . . 7 ((𝐹𝑋) ≠ (𝐹𝑊) → 𝑋𝑊)
6562, 64syl 17 . . . . . 6 (𝜑𝑋𝑊)
6643, 56, 57, 65leneltd 11444 . . . . 5 (𝜑𝑊 < 𝑋)
6766ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊 < 𝑋)
6861ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) < (𝐹𝑋))
6948, 68jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑊) < (𝐹𝑋)))
7069olcd 873 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (((𝐹𝑈) < (𝐹𝑊) ∧ (𝐹𝑋) < (𝐹𝑊)) ∨ ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑊) < (𝐹𝑋))))
7137, 38, 40, 54, 67, 70pmltpclem1 25502 . . 3 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
7243adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → 𝑊 ∈ ℝ)
7315adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → 𝑈 ∈ ℝ)
7436, 71, 72, 73ltlecasei 11398 . 2 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
753ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑈𝐴)
765ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑉𝐴)
7739ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑋𝐴)
7830ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑈 < 𝑉)
79 simpr 484 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑉 < 𝑋)
8024ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (𝐹𝑉) < (𝐹𝑈))
8120adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) ∈ ℝ)
8222adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) ∈ ℝ)
8359adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑋) ∈ ℝ)
8424adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) < (𝐹𝑈))
8546adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑊) ∈ ℝ)
86 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) ≤ (𝐹𝑊))
8761adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑊) < (𝐹𝑋))
8882, 85, 83, 86, 87lelttrd 11448 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) < (𝐹𝑋))
8981, 82, 83, 84, 88lttrd 11451 . . . . . . 7 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) < (𝐹𝑋))
9089adantr 480 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (𝐹𝑉) < (𝐹𝑋))
9180, 90jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → ((𝐹𝑉) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑋)))
9291olcd 873 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (((𝐹𝑈) < (𝐹𝑉) ∧ (𝐹𝑋) < (𝐹𝑉)) ∨ ((𝐹𝑉) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑋))))
9375, 76, 77, 78, 79, 92pmltpclem1 25502 . . 3 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
941ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑊𝐴)
9539ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋𝐴)
965ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉𝐴)
9766ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑊 < 𝑋)
9856ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋 ∈ ℝ)
9917ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉 ∈ ℝ)
100 simpr 484 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋𝑉)
10120ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑉) ∈ ℝ)
10289adantr 480 . . . . . . 7 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑉) < (𝐹𝑋))
103101, 102gtned 11425 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑋) ≠ (𝐹𝑉))
104 fveq2 6920 . . . . . . . 8 (𝑉 = 𝑋 → (𝐹𝑉) = (𝐹𝑋))
105104eqcomd 2746 . . . . . . 7 (𝑉 = 𝑋 → (𝐹𝑋) = (𝐹𝑉))
106105necon3i 2979 . . . . . 6 ((𝐹𝑋) ≠ (𝐹𝑉) → 𝑉𝑋)
107103, 106syl 17 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉𝑋)
10898, 99, 100, 107leneltd 11444 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋 < 𝑉)
10961ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑊) < (𝐹𝑋))
110109, 102jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → ((𝐹𝑊) < (𝐹𝑋) ∧ (𝐹𝑉) < (𝐹𝑋)))
111110orcd 872 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (((𝐹𝑊) < (𝐹𝑋) ∧ (𝐹𝑉) < (𝐹𝑋)) ∨ ((𝐹𝑋) < (𝐹𝑊) ∧ (𝐹𝑋) < (𝐹𝑉))))
11294, 95, 96, 97, 108, 111pmltpclem1 25502 . . 3 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
11317adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → 𝑉 ∈ ℝ)
11456adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → 𝑋 ∈ ℝ)
11593, 112, 113, 114ltlecasei 11398 . 2 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
11674, 115, 46, 22ltlecasei 11398 1 (𝜑 → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  wss 3976   class class class wbr 5166  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  pm cpm 8885  cr 11183   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by:  pmltpc  25504
  Copyright terms: Public domain W3C validator