Proof of Theorem pmltpclem2
Step | Hyp | Ref
| Expression |
1 | | pmltpc.5 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝐴) |
2 | 1 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → 𝑊 ∈ 𝐴) |
3 | | pmltpc.3 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
4 | 3 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → 𝑈 ∈ 𝐴) |
5 | | pmltpc.4 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝐴) |
6 | 5 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → 𝑉 ∈ 𝐴) |
7 | | simpr 485 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → 𝑊 < 𝑈) |
8 | | pmltpc.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (ℝ ↑pm
ℝ)) |
9 | | reex 10962 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
10 | 9, 9 | elpm2 8662 |
. . . . . . . . 9
⊢ (𝐹 ∈ (ℝ
↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ)) |
11 | 8, 10 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ)) |
12 | 11 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
13 | | pmltpc.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
14 | 13, 3 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ dom 𝐹) |
15 | 12, 14 | sseldd 3922 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℝ) |
16 | 13, 5 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ dom 𝐹) |
17 | 12, 16 | sseldd 3922 |
. . . . . 6
⊢ (𝜑 → 𝑉 ∈ ℝ) |
18 | | pmltpc.7 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≤ 𝑉) |
19 | 11 | simpld 495 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
20 | 19, 16 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑉) ∈ ℝ) |
21 | | pmltpc.9 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (𝐹‘𝑈) ≤ (𝐹‘𝑉)) |
22 | 19, 14 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑈) ∈ ℝ) |
23 | 20, 22 | ltnled 11122 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑉) < (𝐹‘𝑈) ↔ ¬ (𝐹‘𝑈) ≤ (𝐹‘𝑉))) |
24 | 21, 23 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑉) < (𝐹‘𝑈)) |
25 | 20, 24 | gtned 11110 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑈) ≠ (𝐹‘𝑉)) |
26 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑉 = 𝑈 → (𝐹‘𝑉) = (𝐹‘𝑈)) |
27 | 26 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝑉 = 𝑈 → (𝐹‘𝑈) = (𝐹‘𝑉)) |
28 | 27 | necon3i 2976 |
. . . . . . 7
⊢ ((𝐹‘𝑈) ≠ (𝐹‘𝑉) → 𝑉 ≠ 𝑈) |
29 | 25, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑉 ≠ 𝑈) |
30 | 15, 17, 18, 29 | leneltd 11129 |
. . . . 5
⊢ (𝜑 → 𝑈 < 𝑉) |
31 | 30 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → 𝑈 < 𝑉) |
32 | | simplr 766 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → (𝐹‘𝑊) < (𝐹‘𝑈)) |
33 | 24 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → (𝐹‘𝑉) < (𝐹‘𝑈)) |
34 | 32, 33 | jca 512 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → ((𝐹‘𝑊) < (𝐹‘𝑈) ∧ (𝐹‘𝑉) < (𝐹‘𝑈))) |
35 | 34 | orcd 870 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → (((𝐹‘𝑊) < (𝐹‘𝑈) ∧ (𝐹‘𝑉) < (𝐹‘𝑈)) ∨ ((𝐹‘𝑈) < (𝐹‘𝑊) ∧ (𝐹‘𝑈) < (𝐹‘𝑉)))) |
36 | 2, 4, 6, 7, 31, 35 | pmltpclem1 24612 |
. . 3
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑊 < 𝑈) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
37 | 3 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → 𝑈 ∈ 𝐴) |
38 | 1 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → 𝑊 ∈ 𝐴) |
39 | | pmltpc.6 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
40 | 39 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → 𝑋 ∈ 𝐴) |
41 | 15 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → 𝑈 ∈ ℝ) |
42 | 13, 1 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ dom 𝐹) |
43 | 12, 42 | sseldd 3922 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ ℝ) |
44 | 43 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → 𝑊 ∈ ℝ) |
45 | | simpr 485 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → 𝑈 ≤ 𝑊) |
46 | 19, 42 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑊) ∈ ℝ) |
47 | 46 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → (𝐹‘𝑊) ∈ ℝ) |
48 | | simplr 766 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → (𝐹‘𝑊) < (𝐹‘𝑈)) |
49 | 47, 48 | gtned 11110 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → (𝐹‘𝑈) ≠ (𝐹‘𝑊)) |
50 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑊 = 𝑈 → (𝐹‘𝑊) = (𝐹‘𝑈)) |
51 | 50 | eqcomd 2744 |
. . . . . . 7
⊢ (𝑊 = 𝑈 → (𝐹‘𝑈) = (𝐹‘𝑊)) |
52 | 51 | necon3i 2976 |
. . . . . 6
⊢ ((𝐹‘𝑈) ≠ (𝐹‘𝑊) → 𝑊 ≠ 𝑈) |
53 | 49, 52 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → 𝑊 ≠ 𝑈) |
54 | 41, 44, 45, 53 | leneltd 11129 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → 𝑈 < 𝑊) |
55 | 13, 39 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ dom 𝐹) |
56 | 12, 55 | sseldd 3922 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℝ) |
57 | | pmltpc.8 |
. . . . . 6
⊢ (𝜑 → 𝑊 ≤ 𝑋) |
58 | | pmltpc.10 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (𝐹‘𝑋) ≤ (𝐹‘𝑊)) |
59 | 19, 55 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) |
60 | 46, 59 | ltnled 11122 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑊) < (𝐹‘𝑋) ↔ ¬ (𝐹‘𝑋) ≤ (𝐹‘𝑊))) |
61 | 58, 60 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑊) < (𝐹‘𝑋)) |
62 | 46, 61 | gtned 11110 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑋) ≠ (𝐹‘𝑊)) |
63 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑋 = 𝑊 → (𝐹‘𝑋) = (𝐹‘𝑊)) |
64 | 63 | necon3i 2976 |
. . . . . . 7
⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑊) → 𝑋 ≠ 𝑊) |
65 | 62, 64 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 ≠ 𝑊) |
66 | 43, 56, 57, 65 | leneltd 11129 |
. . . . 5
⊢ (𝜑 → 𝑊 < 𝑋) |
67 | 66 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → 𝑊 < 𝑋) |
68 | 61 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → (𝐹‘𝑊) < (𝐹‘𝑋)) |
69 | 48, 68 | jca 512 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → ((𝐹‘𝑊) < (𝐹‘𝑈) ∧ (𝐹‘𝑊) < (𝐹‘𝑋))) |
70 | 69 | olcd 871 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → (((𝐹‘𝑈) < (𝐹‘𝑊) ∧ (𝐹‘𝑋) < (𝐹‘𝑊)) ∨ ((𝐹‘𝑊) < (𝐹‘𝑈) ∧ (𝐹‘𝑊) < (𝐹‘𝑋)))) |
71 | 37, 38, 40, 54, 67, 70 | pmltpclem1 24612 |
. . 3
⊢ (((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) ∧ 𝑈 ≤ 𝑊) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
72 | 43 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) → 𝑊 ∈ ℝ) |
73 | 15 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) → 𝑈 ∈ ℝ) |
74 | 36, 71, 72, 73 | ltlecasei 11083 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝑊) < (𝐹‘𝑈)) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
75 | 3 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → 𝑈 ∈ 𝐴) |
76 | 5 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → 𝑉 ∈ 𝐴) |
77 | 39 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → 𝑋 ∈ 𝐴) |
78 | 30 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → 𝑈 < 𝑉) |
79 | | simpr 485 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → 𝑉 < 𝑋) |
80 | 24 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → (𝐹‘𝑉) < (𝐹‘𝑈)) |
81 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → (𝐹‘𝑉) ∈ ℝ) |
82 | 22 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → (𝐹‘𝑈) ∈ ℝ) |
83 | 59 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → (𝐹‘𝑋) ∈ ℝ) |
84 | 24 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → (𝐹‘𝑉) < (𝐹‘𝑈)) |
85 | 46 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → (𝐹‘𝑊) ∈ ℝ) |
86 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → (𝐹‘𝑈) ≤ (𝐹‘𝑊)) |
87 | 61 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → (𝐹‘𝑊) < (𝐹‘𝑋)) |
88 | 82, 85, 83, 86, 87 | lelttrd 11133 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → (𝐹‘𝑈) < (𝐹‘𝑋)) |
89 | 81, 82, 83, 84, 88 | lttrd 11136 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → (𝐹‘𝑉) < (𝐹‘𝑋)) |
90 | 89 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → (𝐹‘𝑉) < (𝐹‘𝑋)) |
91 | 80, 90 | jca 512 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → ((𝐹‘𝑉) < (𝐹‘𝑈) ∧ (𝐹‘𝑉) < (𝐹‘𝑋))) |
92 | 91 | olcd 871 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → (((𝐹‘𝑈) < (𝐹‘𝑉) ∧ (𝐹‘𝑋) < (𝐹‘𝑉)) ∨ ((𝐹‘𝑉) < (𝐹‘𝑈) ∧ (𝐹‘𝑉) < (𝐹‘𝑋)))) |
93 | 75, 76, 77, 78, 79, 92 | pmltpclem1 24612 |
. . 3
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑉 < 𝑋) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
94 | 1 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → 𝑊 ∈ 𝐴) |
95 | 39 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → 𝑋 ∈ 𝐴) |
96 | 5 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → 𝑉 ∈ 𝐴) |
97 | 66 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → 𝑊 < 𝑋) |
98 | 56 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → 𝑋 ∈ ℝ) |
99 | 17 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → 𝑉 ∈ ℝ) |
100 | | simpr 485 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → 𝑋 ≤ 𝑉) |
101 | 20 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → (𝐹‘𝑉) ∈ ℝ) |
102 | 89 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → (𝐹‘𝑉) < (𝐹‘𝑋)) |
103 | 101, 102 | gtned 11110 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → (𝐹‘𝑋) ≠ (𝐹‘𝑉)) |
104 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑉 = 𝑋 → (𝐹‘𝑉) = (𝐹‘𝑋)) |
105 | 104 | eqcomd 2744 |
. . . . . . 7
⊢ (𝑉 = 𝑋 → (𝐹‘𝑋) = (𝐹‘𝑉)) |
106 | 105 | necon3i 2976 |
. . . . . 6
⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑉) → 𝑉 ≠ 𝑋) |
107 | 103, 106 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → 𝑉 ≠ 𝑋) |
108 | 98, 99, 100, 107 | leneltd 11129 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → 𝑋 < 𝑉) |
109 | 61 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → (𝐹‘𝑊) < (𝐹‘𝑋)) |
110 | 109, 102 | jca 512 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → ((𝐹‘𝑊) < (𝐹‘𝑋) ∧ (𝐹‘𝑉) < (𝐹‘𝑋))) |
111 | 110 | orcd 870 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → (((𝐹‘𝑊) < (𝐹‘𝑋) ∧ (𝐹‘𝑉) < (𝐹‘𝑋)) ∨ ((𝐹‘𝑋) < (𝐹‘𝑊) ∧ (𝐹‘𝑋) < (𝐹‘𝑉)))) |
112 | 94, 95, 96, 97, 108, 111 | pmltpclem1 24612 |
. . 3
⊢ (((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) ∧ 𝑋 ≤ 𝑉) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
113 | 17 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → 𝑉 ∈ ℝ) |
114 | 56 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → 𝑋 ∈ ℝ) |
115 | 93, 112, 113, 114 | ltlecasei 11083 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝑈) ≤ (𝐹‘𝑊)) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |
116 | 74, 115, 46, 22 | ltlecasei 11083 |
1
⊢ (𝜑 → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) |