MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpclem2 Structured version   Visualization version   GIF version

Theorem pmltpclem2 24518
Description: Lemma for pmltpc 24519. (Contributed by Mario Carneiro, 1-Jul-2014.)
Hypotheses
Ref Expression
pmltpc.1 (𝜑𝐹 ∈ (ℝ ↑pm ℝ))
pmltpc.2 (𝜑𝐴 ⊆ dom 𝐹)
pmltpc.3 (𝜑𝑈𝐴)
pmltpc.4 (𝜑𝑉𝐴)
pmltpc.5 (𝜑𝑊𝐴)
pmltpc.6 (𝜑𝑋𝐴)
pmltpc.7 (𝜑𝑈𝑉)
pmltpc.8 (𝜑𝑊𝑋)
pmltpc.9 (𝜑 → ¬ (𝐹𝑈) ≤ (𝐹𝑉))
pmltpc.10 (𝜑 → ¬ (𝐹𝑋) ≤ (𝐹𝑊))
Assertion
Ref Expression
pmltpclem2 (𝜑 → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝐴   𝐹,𝑎,𝑏,𝑐   𝑉,𝑏,𝑐   𝑈,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐   𝑋,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝑉(𝑎)   𝑋(𝑎)

Proof of Theorem pmltpclem2
StepHypRef Expression
1 pmltpc.5 . . . . 5 (𝜑𝑊𝐴)
21ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑊𝐴)
3 pmltpc.3 . . . . 5 (𝜑𝑈𝐴)
43ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑈𝐴)
5 pmltpc.4 . . . . 5 (𝜑𝑉𝐴)
65ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑉𝐴)
7 simpr 484 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑊 < 𝑈)
8 pmltpc.1 . . . . . . . . 9 (𝜑𝐹 ∈ (ℝ ↑pm ℝ))
9 reex 10893 . . . . . . . . . 10 ℝ ∈ V
109, 9elpm2 8620 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
118, 10sylib 217 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
1211simprd 495 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ ℝ)
13 pmltpc.2 . . . . . . . 8 (𝜑𝐴 ⊆ dom 𝐹)
1413, 3sseldd 3918 . . . . . . 7 (𝜑𝑈 ∈ dom 𝐹)
1512, 14sseldd 3918 . . . . . 6 (𝜑𝑈 ∈ ℝ)
1613, 5sseldd 3918 . . . . . . 7 (𝜑𝑉 ∈ dom 𝐹)
1712, 16sseldd 3918 . . . . . 6 (𝜑𝑉 ∈ ℝ)
18 pmltpc.7 . . . . . 6 (𝜑𝑈𝑉)
1911simpld 494 . . . . . . . . 9 (𝜑𝐹:dom 𝐹⟶ℝ)
2019, 16ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝐹𝑉) ∈ ℝ)
21 pmltpc.9 . . . . . . . . 9 (𝜑 → ¬ (𝐹𝑈) ≤ (𝐹𝑉))
2219, 14ffvelrnd 6944 . . . . . . . . . 10 (𝜑 → (𝐹𝑈) ∈ ℝ)
2320, 22ltnled 11052 . . . . . . . . 9 (𝜑 → ((𝐹𝑉) < (𝐹𝑈) ↔ ¬ (𝐹𝑈) ≤ (𝐹𝑉)))
2421, 23mpbird 256 . . . . . . . 8 (𝜑 → (𝐹𝑉) < (𝐹𝑈))
2520, 24gtned 11040 . . . . . . 7 (𝜑 → (𝐹𝑈) ≠ (𝐹𝑉))
26 fveq2 6756 . . . . . . . . 9 (𝑉 = 𝑈 → (𝐹𝑉) = (𝐹𝑈))
2726eqcomd 2744 . . . . . . . 8 (𝑉 = 𝑈 → (𝐹𝑈) = (𝐹𝑉))
2827necon3i 2975 . . . . . . 7 ((𝐹𝑈) ≠ (𝐹𝑉) → 𝑉𝑈)
2925, 28syl 17 . . . . . 6 (𝜑𝑉𝑈)
3015, 17, 18, 29leneltd 11059 . . . . 5 (𝜑𝑈 < 𝑉)
3130ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → 𝑈 < 𝑉)
32 simplr 765 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (𝐹𝑊) < (𝐹𝑈))
3324ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (𝐹𝑉) < (𝐹𝑈))
3432, 33jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑈)))
3534orcd 869 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → (((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑈)) ∨ ((𝐹𝑈) < (𝐹𝑊) ∧ (𝐹𝑈) < (𝐹𝑉))))
362, 4, 6, 7, 31, 35pmltpclem1 24517 . . 3 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑊 < 𝑈) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
373ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈𝐴)
381ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊𝐴)
39 pmltpc.6 . . . . 5 (𝜑𝑋𝐴)
4039ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑋𝐴)
4115ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈 ∈ ℝ)
4213, 1sseldd 3918 . . . . . . 7 (𝜑𝑊 ∈ dom 𝐹)
4312, 42sseldd 3918 . . . . . 6 (𝜑𝑊 ∈ ℝ)
4443ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊 ∈ ℝ)
45 simpr 484 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈𝑊)
4619, 42ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝐹𝑊) ∈ ℝ)
4746ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) ∈ ℝ)
48 simplr 765 . . . . . . 7 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) < (𝐹𝑈))
4947, 48gtned 11040 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑈) ≠ (𝐹𝑊))
50 fveq2 6756 . . . . . . . 8 (𝑊 = 𝑈 → (𝐹𝑊) = (𝐹𝑈))
5150eqcomd 2744 . . . . . . 7 (𝑊 = 𝑈 → (𝐹𝑈) = (𝐹𝑊))
5251necon3i 2975 . . . . . 6 ((𝐹𝑈) ≠ (𝐹𝑊) → 𝑊𝑈)
5349, 52syl 17 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊𝑈)
5441, 44, 45, 53leneltd 11059 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑈 < 𝑊)
5513, 39sseldd 3918 . . . . . . 7 (𝜑𝑋 ∈ dom 𝐹)
5612, 55sseldd 3918 . . . . . 6 (𝜑𝑋 ∈ ℝ)
57 pmltpc.8 . . . . . 6 (𝜑𝑊𝑋)
58 pmltpc.10 . . . . . . . . 9 (𝜑 → ¬ (𝐹𝑋) ≤ (𝐹𝑊))
5919, 55ffvelrnd 6944 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ℝ)
6046, 59ltnled 11052 . . . . . . . . 9 (𝜑 → ((𝐹𝑊) < (𝐹𝑋) ↔ ¬ (𝐹𝑋) ≤ (𝐹𝑊)))
6158, 60mpbird 256 . . . . . . . 8 (𝜑 → (𝐹𝑊) < (𝐹𝑋))
6246, 61gtned 11040 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ (𝐹𝑊))
63 fveq2 6756 . . . . . . . 8 (𝑋 = 𝑊 → (𝐹𝑋) = (𝐹𝑊))
6463necon3i 2975 . . . . . . 7 ((𝐹𝑋) ≠ (𝐹𝑊) → 𝑋𝑊)
6562, 64syl 17 . . . . . 6 (𝜑𝑋𝑊)
6643, 56, 57, 65leneltd 11059 . . . . 5 (𝜑𝑊 < 𝑋)
6766ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → 𝑊 < 𝑋)
6861ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (𝐹𝑊) < (𝐹𝑋))
6948, 68jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑊) < (𝐹𝑋)))
7069olcd 870 . . . 4 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → (((𝐹𝑈) < (𝐹𝑊) ∧ (𝐹𝑋) < (𝐹𝑊)) ∨ ((𝐹𝑊) < (𝐹𝑈) ∧ (𝐹𝑊) < (𝐹𝑋))))
7137, 38, 40, 54, 67, 70pmltpclem1 24517 . . 3 (((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) ∧ 𝑈𝑊) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
7243adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → 𝑊 ∈ ℝ)
7315adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → 𝑈 ∈ ℝ)
7436, 71, 72, 73ltlecasei 11013 . 2 ((𝜑 ∧ (𝐹𝑊) < (𝐹𝑈)) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
753ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑈𝐴)
765ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑉𝐴)
7739ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑋𝐴)
7830ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑈 < 𝑉)
79 simpr 484 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → 𝑉 < 𝑋)
8024ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (𝐹𝑉) < (𝐹𝑈))
8120adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) ∈ ℝ)
8222adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) ∈ ℝ)
8359adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑋) ∈ ℝ)
8424adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) < (𝐹𝑈))
8546adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑊) ∈ ℝ)
86 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) ≤ (𝐹𝑊))
8761adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑊) < (𝐹𝑋))
8882, 85, 83, 86, 87lelttrd 11063 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑈) < (𝐹𝑋))
8981, 82, 83, 84, 88lttrd 11066 . . . . . . 7 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → (𝐹𝑉) < (𝐹𝑋))
9089adantr 480 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (𝐹𝑉) < (𝐹𝑋))
9180, 90jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → ((𝐹𝑉) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑋)))
9291olcd 870 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → (((𝐹𝑈) < (𝐹𝑉) ∧ (𝐹𝑋) < (𝐹𝑉)) ∨ ((𝐹𝑉) < (𝐹𝑈) ∧ (𝐹𝑉) < (𝐹𝑋))))
9375, 76, 77, 78, 79, 92pmltpclem1 24517 . . 3 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑉 < 𝑋) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
941ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑊𝐴)
9539ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋𝐴)
965ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉𝐴)
9766ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑊 < 𝑋)
9856ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋 ∈ ℝ)
9917ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉 ∈ ℝ)
100 simpr 484 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋𝑉)
10120ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑉) ∈ ℝ)
10289adantr 480 . . . . . . 7 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑉) < (𝐹𝑋))
103101, 102gtned 11040 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑋) ≠ (𝐹𝑉))
104 fveq2 6756 . . . . . . . 8 (𝑉 = 𝑋 → (𝐹𝑉) = (𝐹𝑋))
105104eqcomd 2744 . . . . . . 7 (𝑉 = 𝑋 → (𝐹𝑋) = (𝐹𝑉))
106105necon3i 2975 . . . . . 6 ((𝐹𝑋) ≠ (𝐹𝑉) → 𝑉𝑋)
107103, 106syl 17 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑉𝑋)
10898, 99, 100, 107leneltd 11059 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → 𝑋 < 𝑉)
10961ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (𝐹𝑊) < (𝐹𝑋))
110109, 102jca 511 . . . . 5 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → ((𝐹𝑊) < (𝐹𝑋) ∧ (𝐹𝑉) < (𝐹𝑋)))
111110orcd 869 . . . 4 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → (((𝐹𝑊) < (𝐹𝑋) ∧ (𝐹𝑉) < (𝐹𝑋)) ∨ ((𝐹𝑋) < (𝐹𝑊) ∧ (𝐹𝑋) < (𝐹𝑉))))
11294, 95, 96, 97, 108, 111pmltpclem1 24517 . . 3 (((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) ∧ 𝑋𝑉) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
11317adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → 𝑉 ∈ ℝ)
11456adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → 𝑋 ∈ ℝ)
11593, 112, 113, 114ltlecasei 11013 . 2 ((𝜑 ∧ (𝐹𝑈) ≤ (𝐹𝑊)) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
11674, 115, 46, 22ltlecasei 11013 1 (𝜑 → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  cr 10801   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  pmltpc  24519
  Copyright terms: Public domain W3C validator