Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divcncf | Structured version Visualization version GIF version |
Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
divcncf.1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
divcncf.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0}))) |
Ref | Expression |
---|---|
divcncf | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcncf.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
2 | cncff 24154 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | 3 | fvmptelcdm 7037 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
5 | divcncf.2 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0}))) | |
6 | cncff 24154 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0})) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(ℂ ∖ {0})) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(ℂ ∖ {0})) |
8 | 7 | fvmptelcdm 7037 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (ℂ ∖ {0})) |
9 | 8 | eldifad 3909 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
10 | eldifsni 4736 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0) | |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ≠ 0) |
12 | 4, 9, 11 | divrecd 11847 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
13 | 12 | mpteq2dva 5189 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵)))) |
14 | 8 | ralrimiva 3139 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ (ℂ ∖ {0})) |
15 | eqidd 2737 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
16 | eqidd 2737 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) | |
17 | 14, 15, 16 | fmptcos 7053 | . . . . 5 ⊢ (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑦⦌(1 / 𝑦))) |
18 | csbov2g 7375 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑦⦌(1 / 𝑦) = (1 / ⦋𝐵 / 𝑦⦌𝑦)) | |
19 | 9, 18 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑦⦌(1 / 𝑦) = (1 / ⦋𝐵 / 𝑦⦌𝑦)) |
20 | csbvarg 4377 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑦⦌𝑦 = 𝐵) | |
21 | 9, 20 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑦⦌𝑦 = 𝐵) |
22 | 21 | oveq2d 7345 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 / ⦋𝐵 / 𝑦⦌𝑦) = (1 / 𝐵)) |
23 | 19, 22 | eqtrd 2776 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑦⦌(1 / 𝑦) = (1 / 𝐵)) |
24 | 23 | mpteq2dva 5189 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑦⦌(1 / 𝑦)) = (𝑥 ∈ 𝑋 ↦ (1 / 𝐵))) |
25 | 17, 24 | eqtr2d 2777 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) = ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵))) |
26 | ax-1cn 11022 | . . . . . 6 ⊢ 1 ∈ ℂ | |
27 | eqid 2736 | . . . . . . 7 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) | |
28 | 27 | cdivcncf 24182 | . . . . . 6 ⊢ (1 ∈ ℂ → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ)) |
29 | 26, 28 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ)) |
30 | 5, 29 | cncfco 24168 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) ∈ (𝑋–cn→ℂ)) |
31 | 25, 30 | eqeltrd 2837 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
32 | 1, 31 | mulcncf 24708 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋–cn→ℂ)) |
33 | 13, 32 | eqeltrd 2837 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ⦋csb 3842 ∖ cdif 3894 {csn 4572 ↦ cmpt 5172 ∘ ccom 5618 ⟶wf 6469 (class class class)co 7329 ℂcc 10962 0cc0 10964 1c1 10965 · cmul 10969 / cdiv 11725 –cn→ccncf 24137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 ax-mulf 11044 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-supp 8040 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-er 8561 df-map 8680 df-ixp 8749 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fsupp 9219 df-fi 9260 df-sup 9291 df-inf 9292 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-q 12782 df-rp 12824 df-xneg 12941 df-xadd 12942 df-xmul 12943 df-icc 13179 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-starv 17066 df-sca 17067 df-vsca 17068 df-ip 17069 df-tset 17070 df-ple 17071 df-ds 17073 df-unif 17074 df-hom 17075 df-cco 17076 df-rest 17222 df-topn 17223 df-0g 17241 df-gsum 17242 df-topgen 17243 df-pt 17244 df-prds 17247 df-xrs 17302 df-qtop 17307 df-imas 17308 df-xps 17310 df-mre 17384 df-mrc 17385 df-acs 17387 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-submnd 18520 df-mulg 18789 df-cntz 19011 df-cmn 19475 df-psmet 20687 df-xmet 20688 df-met 20689 df-bl 20690 df-mopn 20691 df-cnfld 20696 df-top 22141 df-topon 22158 df-topsp 22180 df-bases 22194 df-cn 22476 df-cnp 22477 df-tx 22811 df-hmeo 23004 df-xms 23571 df-ms 23572 df-tms 23573 df-cncf 24139 |
This theorem is referenced by: logdivsqrle 32871 divcncff 43757 itgcoscmulx 43835 itgsincmulx 43840 dirkeritg 43968 dirkercncflem2 43970 fourierdlem39 44012 fourierdlem58 44030 fourierdlem62 44034 fourierdlem68 44040 fourierdlem76 44048 |
Copyright terms: Public domain | W3C validator |