Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divcncf | Structured version Visualization version GIF version |
Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
divcncf.1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
divcncf.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0}))) |
Ref | Expression |
---|---|
divcncf | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcncf.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
2 | cncff 23608 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | 3 | fvmptelrn 6874 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
5 | divcncf.2 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0}))) | |
6 | cncff 23608 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0})) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(ℂ ∖ {0})) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(ℂ ∖ {0})) |
8 | 7 | fvmptelrn 6874 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (ℂ ∖ {0})) |
9 | 8 | eldifad 3872 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
10 | eldifsni 4683 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0) | |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ≠ 0) |
12 | 4, 9, 11 | divrecd 11470 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
13 | 12 | mpteq2dva 5131 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵)))) |
14 | 8 | ralrimiva 3113 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ (ℂ ∖ {0})) |
15 | eqidd 2759 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
16 | eqidd 2759 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) | |
17 | 14, 15, 16 | fmptcos 6890 | . . . . 5 ⊢ (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑦⦌(1 / 𝑦))) |
18 | csbov2g 7202 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑦⦌(1 / 𝑦) = (1 / ⦋𝐵 / 𝑦⦌𝑦)) | |
19 | 9, 18 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑦⦌(1 / 𝑦) = (1 / ⦋𝐵 / 𝑦⦌𝑦)) |
20 | csbvarg 4331 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑦⦌𝑦 = 𝐵) | |
21 | 9, 20 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑦⦌𝑦 = 𝐵) |
22 | 21 | oveq2d 7172 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 / ⦋𝐵 / 𝑦⦌𝑦) = (1 / 𝐵)) |
23 | 19, 22 | eqtrd 2793 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑦⦌(1 / 𝑦) = (1 / 𝐵)) |
24 | 23 | mpteq2dva 5131 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑦⦌(1 / 𝑦)) = (𝑥 ∈ 𝑋 ↦ (1 / 𝐵))) |
25 | 17, 24 | eqtr2d 2794 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) = ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵))) |
26 | ax-1cn 10646 | . . . . . 6 ⊢ 1 ∈ ℂ | |
27 | eqid 2758 | . . . . . . 7 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) | |
28 | 27 | cdivcncf 23636 | . . . . . 6 ⊢ (1 ∈ ℂ → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ)) |
29 | 26, 28 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ)) |
30 | 5, 29 | cncfco 23622 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) ∈ (𝑋–cn→ℂ)) |
31 | 25, 30 | eqeltrd 2852 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
32 | 1, 31 | mulcncf 24160 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋–cn→ℂ)) |
33 | 13, 32 | eqeltrd 2852 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ⦋csb 3807 ∖ cdif 3857 {csn 4525 ↦ cmpt 5116 ∘ ccom 5532 ⟶wf 6336 (class class class)co 7156 ℂcc 10586 0cc0 10588 1c1 10589 · cmul 10593 / cdiv 11348 –cn→ccncf 23591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-er 8305 df-map 8424 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-icc 12799 df-fz 12953 df-fzo 13096 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-starv 16652 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-hom 16661 df-cco 16662 df-rest 16768 df-topn 16769 df-0g 16787 df-gsum 16788 df-topgen 16789 df-pt 16790 df-prds 16793 df-xrs 16847 df-qtop 16852 df-imas 16853 df-xps 16855 df-mre 16929 df-mrc 16930 df-acs 16932 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-submnd 18037 df-mulg 18306 df-cntz 18528 df-cmn 18989 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-cnfld 20181 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-cn 21941 df-cnp 21942 df-tx 22276 df-hmeo 22469 df-xms 23036 df-ms 23037 df-tms 23038 df-cncf 23593 |
This theorem is referenced by: logdivsqrle 32162 divcncff 42944 itgcoscmulx 43022 itgsincmulx 43027 dirkeritg 43155 dirkercncflem2 43157 fourierdlem39 43199 fourierdlem58 43217 fourierdlem62 43221 fourierdlem68 43227 fourierdlem76 43235 |
Copyright terms: Public domain | W3C validator |