![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divcncf | Structured version Visualization version GIF version |
Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
divcncf.1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
divcncf.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0}))) |
Ref | Expression |
---|---|
divcncf | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcncf.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
2 | cncff 24938 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | 3 | fvmptelcdm 7147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
5 | divcncf.2 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0}))) | |
6 | cncff 24938 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0})) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(ℂ ∖ {0})) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(ℂ ∖ {0})) |
8 | 7 | fvmptelcdm 7147 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (ℂ ∖ {0})) |
9 | 8 | eldifad 3988 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
10 | eldifsni 4815 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0) | |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ≠ 0) |
12 | 4, 9, 11 | divrecd 12073 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
13 | 12 | mpteq2dva 5266 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵)))) |
14 | 8 | ralrimiva 3152 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ (ℂ ∖ {0})) |
15 | eqidd 2741 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
16 | eqidd 2741 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) | |
17 | 14, 15, 16 | fmptcos 7165 | . . . . 5 ⊢ (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑦⦌(1 / 𝑦))) |
18 | csbov2g 7496 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑦⦌(1 / 𝑦) = (1 / ⦋𝐵 / 𝑦⦌𝑦)) | |
19 | 9, 18 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑦⦌(1 / 𝑦) = (1 / ⦋𝐵 / 𝑦⦌𝑦)) |
20 | csbvarg 4457 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑦⦌𝑦 = 𝐵) | |
21 | 9, 20 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑦⦌𝑦 = 𝐵) |
22 | 21 | oveq2d 7464 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 / ⦋𝐵 / 𝑦⦌𝑦) = (1 / 𝐵)) |
23 | 19, 22 | eqtrd 2780 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑦⦌(1 / 𝑦) = (1 / 𝐵)) |
24 | 23 | mpteq2dva 5266 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑦⦌(1 / 𝑦)) = (𝑥 ∈ 𝑋 ↦ (1 / 𝐵))) |
25 | 17, 24 | eqtr2d 2781 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) = ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵))) |
26 | ax-1cn 11242 | . . . . . 6 ⊢ 1 ∈ ℂ | |
27 | eqid 2740 | . . . . . . 7 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) | |
28 | 27 | cdivcncf 24966 | . . . . . 6 ⊢ (1 ∈ ℂ → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ)) |
29 | 26, 28 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ)) |
30 | 5, 29 | cncfco 24952 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) ∈ (𝑋–cn→ℂ)) |
31 | 25, 30 | eqeltrd 2844 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
32 | 1, 31 | mulcncf 25499 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋–cn→ℂ)) |
33 | 13, 32 | eqeltrd 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⦋csb 3921 ∖ cdif 3973 {csn 4648 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 / cdiv 11947 –cn→ccncf 24921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 |
This theorem is referenced by: logdivsqrle 34627 divcncff 45812 itgcoscmulx 45890 itgsincmulx 45895 dirkeritg 46023 dirkercncflem2 46025 fourierdlem39 46067 fourierdlem58 46085 fourierdlem62 46089 fourierdlem68 46095 fourierdlem76 46103 |
Copyright terms: Public domain | W3C validator |