Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcncf Structured version   Visualization version   GIF version

Theorem divcncf 24161
 Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
divcncf.1 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
divcncf.2 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})))
Assertion
Ref Expression
divcncf (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem divcncf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 divcncf.1 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 23608 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
43fvmptelrn 6874 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 divcncf.2 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})))
6 cncff 23608 . . . . . . 7 ((𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})) → (𝑥𝑋𝐵):𝑋⟶(ℂ ∖ {0}))
75, 6syl 17 . . . . . 6 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(ℂ ∖ {0}))
87fvmptelrn 6874 . . . . 5 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
98eldifad 3872 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
10 eldifsni 4683 . . . . 5 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0)
118, 10syl 17 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
124, 9, 11divrecd 11470 . . 3 ((𝜑𝑥𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
1312mpteq2dva 5131 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) = (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))))
148ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵 ∈ (ℂ ∖ {0}))
15 eqidd 2759 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) = (𝑥𝑋𝐵))
16 eqidd 2759 . . . . . 6 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)))
1714, 15, 16fmptcos 6890 . . . . 5 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝑋𝐵)) = (𝑥𝑋𝐵 / 𝑦(1 / 𝑦)))
18 csbov2g 7202 . . . . . . . 8 (𝐵 ∈ ℂ → 𝐵 / 𝑦(1 / 𝑦) = (1 / 𝐵 / 𝑦𝑦))
199, 18syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 / 𝑦(1 / 𝑦) = (1 / 𝐵 / 𝑦𝑦))
20 csbvarg 4331 . . . . . . . . 9 (𝐵 ∈ ℂ → 𝐵 / 𝑦𝑦 = 𝐵)
219, 20syl 17 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 / 𝑦𝑦 = 𝐵)
2221oveq2d 7172 . . . . . . 7 ((𝜑𝑥𝑋) → (1 / 𝐵 / 𝑦𝑦) = (1 / 𝐵))
2319, 22eqtrd 2793 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 / 𝑦(1 / 𝑦) = (1 / 𝐵))
2423mpteq2dva 5131 . . . . 5 (𝜑 → (𝑥𝑋𝐵 / 𝑦(1 / 𝑦)) = (𝑥𝑋 ↦ (1 / 𝐵)))
2517, 24eqtr2d 2794 . . . 4 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) = ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝑋𝐵)))
26 ax-1cn 10646 . . . . . 6 1 ∈ ℂ
27 eqid 2758 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))
2827cdivcncf 23636 . . . . . 6 (1 ∈ ℂ → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ))
2926, 28mp1i 13 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ))
305, 29cncfco 23622 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝑋𝐵)) ∈ (𝑋cn→ℂ))
3125, 30eqeltrd 2852 . . 3 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) ∈ (𝑋cn→ℂ))
321, 31mulcncf 24160 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋cn→ℂ))
3313, 32eqeltrd 2852 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ⦋csb 3807   ∖ cdif 3857  {csn 4525   ↦ cmpt 5116   ∘ ccom 5532  ⟶wf 6336  (class class class)co 7156  ℂcc 10586  0cc0 10588  1c1 10589   · cmul 10593   / cdiv 11348  –cn→ccncf 23591 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666  ax-mulf 10668 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-map 8424  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-fi 8921  df-sup 8952  df-inf 8953  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-icc 12799  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-starv 16652  df-sca 16653  df-vsca 16654  df-ip 16655  df-tset 16656  df-ple 16657  df-ds 16659  df-unif 16660  df-hom 16661  df-cco 16662  df-rest 16768  df-topn 16769  df-0g 16787  df-gsum 16788  df-topgen 16789  df-pt 16790  df-prds 16793  df-xrs 16847  df-qtop 16852  df-imas 16853  df-xps 16855  df-mre 16929  df-mrc 16930  df-acs 16932  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-submnd 18037  df-mulg 18306  df-cntz 18528  df-cmn 18989  df-psmet 20172  df-xmet 20173  df-met 20174  df-bl 20175  df-mopn 20176  df-cnfld 20181  df-top 21608  df-topon 21625  df-topsp 21647  df-bases 21660  df-cn 21941  df-cnp 21942  df-tx 22276  df-hmeo 22469  df-xms 23036  df-ms 23037  df-tms 23038  df-cncf 23593 This theorem is referenced by:  logdivsqrle  32162  divcncff  42944  itgcoscmulx  43022  itgsincmulx  43027  dirkeritg  43155  dirkercncflem2  43157  fourierdlem39  43199  fourierdlem58  43217  fourierdlem62  43221  fourierdlem68  43227  fourierdlem76  43235
 Copyright terms: Public domain W3C validator