MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcncf Structured version   Visualization version   GIF version

Theorem divcncf 25364
Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
divcncf.1 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
divcncf.2 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})))
Assertion
Ref Expression
divcncf (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem divcncf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 divcncf.1 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 24802 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
43fvmptelcdm 7051 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 divcncf.2 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})))
6 cncff 24802 . . . . . . 7 ((𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})) → (𝑥𝑋𝐵):𝑋⟶(ℂ ∖ {0}))
75, 6syl 17 . . . . . 6 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(ℂ ∖ {0}))
87fvmptelcdm 7051 . . . . 5 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
98eldifad 3917 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
10 eldifsni 4744 . . . . 5 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0)
118, 10syl 17 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
124, 9, 11divrecd 11921 . . 3 ((𝜑𝑥𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
1312mpteq2dva 5188 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) = (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))))
148ralrimiva 3121 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵 ∈ (ℂ ∖ {0}))
15 eqidd 2730 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) = (𝑥𝑋𝐵))
16 eqidd 2730 . . . . . 6 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)))
1714, 15, 16fmptcos 7069 . . . . 5 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝑋𝐵)) = (𝑥𝑋𝐵 / 𝑦(1 / 𝑦)))
18 csbov2g 7401 . . . . . . . 8 (𝐵 ∈ ℂ → 𝐵 / 𝑦(1 / 𝑦) = (1 / 𝐵 / 𝑦𝑦))
199, 18syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 / 𝑦(1 / 𝑦) = (1 / 𝐵 / 𝑦𝑦))
20 csbvarg 4387 . . . . . . . . 9 (𝐵 ∈ ℂ → 𝐵 / 𝑦𝑦 = 𝐵)
219, 20syl 17 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 / 𝑦𝑦 = 𝐵)
2221oveq2d 7369 . . . . . . 7 ((𝜑𝑥𝑋) → (1 / 𝐵 / 𝑦𝑦) = (1 / 𝐵))
2319, 22eqtrd 2764 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 / 𝑦(1 / 𝑦) = (1 / 𝐵))
2423mpteq2dva 5188 . . . . 5 (𝜑 → (𝑥𝑋𝐵 / 𝑦(1 / 𝑦)) = (𝑥𝑋 ↦ (1 / 𝐵)))
2517, 24eqtr2d 2765 . . . 4 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) = ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝑋𝐵)))
26 ax-1cn 11086 . . . . . 6 1 ∈ ℂ
27 eqid 2729 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))
2827cdivcncf 24830 . . . . . 6 (1 ∈ ℂ → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ))
2926, 28mp1i 13 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ))
305, 29cncfco 24816 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝑋𝐵)) ∈ (𝑋cn→ℂ))
3125, 30eqeltrd 2828 . . 3 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) ∈ (𝑋cn→ℂ))
321, 31mulcncf 25362 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋cn→ℂ))
3313, 32eqeltrd 2828 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  csb 3853  cdif 3902  {csn 4579  cmpt 5176  ccom 5627  wf 6482  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   · cmul 11033   / cdiv 11795  cnccncf 24785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cn 23130  df-cnp 23131  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787
This theorem is referenced by:  logdivsqrle  34617  divcncff  45873  itgcoscmulx  45951  itgsincmulx  45956  dirkeritg  46084  dirkercncflem2  46086  fourierdlem39  46128  fourierdlem58  46146  fourierdlem62  46150  fourierdlem68  46156  fourierdlem76  46164
  Copyright terms: Public domain W3C validator