MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcncf Structured version   Visualization version   GIF version

Theorem divcncf 24709
Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
divcncf.1 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
divcncf.2 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})))
Assertion
Ref Expression
divcncf (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem divcncf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 divcncf.1 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 24154 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
43fvmptelcdm 7037 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 divcncf.2 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})))
6 cncff 24154 . . . . . . 7 ((𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})) → (𝑥𝑋𝐵):𝑋⟶(ℂ ∖ {0}))
75, 6syl 17 . . . . . 6 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(ℂ ∖ {0}))
87fvmptelcdm 7037 . . . . 5 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
98eldifad 3909 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
10 eldifsni 4736 . . . . 5 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0)
118, 10syl 17 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
124, 9, 11divrecd 11847 . . 3 ((𝜑𝑥𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
1312mpteq2dva 5189 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) = (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))))
148ralrimiva 3139 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵 ∈ (ℂ ∖ {0}))
15 eqidd 2737 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) = (𝑥𝑋𝐵))
16 eqidd 2737 . . . . . 6 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)))
1714, 15, 16fmptcos 7053 . . . . 5 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝑋𝐵)) = (𝑥𝑋𝐵 / 𝑦(1 / 𝑦)))
18 csbov2g 7375 . . . . . . . 8 (𝐵 ∈ ℂ → 𝐵 / 𝑦(1 / 𝑦) = (1 / 𝐵 / 𝑦𝑦))
199, 18syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 / 𝑦(1 / 𝑦) = (1 / 𝐵 / 𝑦𝑦))
20 csbvarg 4377 . . . . . . . . 9 (𝐵 ∈ ℂ → 𝐵 / 𝑦𝑦 = 𝐵)
219, 20syl 17 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 / 𝑦𝑦 = 𝐵)
2221oveq2d 7345 . . . . . . 7 ((𝜑𝑥𝑋) → (1 / 𝐵 / 𝑦𝑦) = (1 / 𝐵))
2319, 22eqtrd 2776 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 / 𝑦(1 / 𝑦) = (1 / 𝐵))
2423mpteq2dva 5189 . . . . 5 (𝜑 → (𝑥𝑋𝐵 / 𝑦(1 / 𝑦)) = (𝑥𝑋 ↦ (1 / 𝐵)))
2517, 24eqtr2d 2777 . . . 4 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) = ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝑋𝐵)))
26 ax-1cn 11022 . . . . . 6 1 ∈ ℂ
27 eqid 2736 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))
2827cdivcncf 24182 . . . . . 6 (1 ∈ ℂ → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ))
2926, 28mp1i 13 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((ℂ ∖ {0})–cn→ℂ))
305, 29cncfco 24168 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝑋𝐵)) ∈ (𝑋cn→ℂ))
3125, 30eqeltrd 2837 . . 3 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) ∈ (𝑋cn→ℂ))
321, 31mulcncf 24708 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋cn→ℂ))
3313, 32eqeltrd 2837 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  csb 3842  cdif 3894  {csn 4572  cmpt 5172  ccom 5618  wf 6469  (class class class)co 7329  cc 10962  0cc0 10964  1c1 10965   · cmul 10969   / cdiv 11725  cnccncf 24137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042  ax-mulf 11044
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-er 8561  df-map 8680  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-fi 9260  df-sup 9291  df-inf 9292  df-oi 9359  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-q 12782  df-rp 12824  df-xneg 12941  df-xadd 12942  df-xmul 12943  df-icc 13179  df-fz 13333  df-fzo 13476  df-seq 13815  df-exp 13876  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-hom 17075  df-cco 17076  df-rest 17222  df-topn 17223  df-0g 17241  df-gsum 17242  df-topgen 17243  df-pt 17244  df-prds 17247  df-xrs 17302  df-qtop 17307  df-imas 17308  df-xps 17310  df-mre 17384  df-mrc 17385  df-acs 17387  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-submnd 18520  df-mulg 18789  df-cntz 19011  df-cmn 19475  df-psmet 20687  df-xmet 20688  df-met 20689  df-bl 20690  df-mopn 20691  df-cnfld 20696  df-top 22141  df-topon 22158  df-topsp 22180  df-bases 22194  df-cn 22476  df-cnp 22477  df-tx 22811  df-hmeo 23004  df-xms 23571  df-ms 23572  df-tms 23573  df-cncf 24139
This theorem is referenced by:  logdivsqrle  32871  divcncff  43757  itgcoscmulx  43835  itgsincmulx  43840  dirkeritg  43968  dirkercncflem2  43970  fourierdlem39  44012  fourierdlem58  44030  fourierdlem62  44034  fourierdlem68  44040  fourierdlem76  44048
  Copyright terms: Public domain W3C validator