MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poleloe Structured version   Visualization version   GIF version

Theorem poleloe 6133
Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poleloe (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))

Proof of Theorem poleloe
StepHypRef Expression
1 brun 5200 . 2 (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 I 𝐵))
2 ideqg 5852 . . 3 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
32orbi2d 915 . 2 (𝐵𝑉 → ((𝐴𝑅𝐵𝐴 I 𝐵) ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
41, 3bitrid 283 1 (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 846   = wceq 1542  wcel 2107  cun 3947   class class class wbr 5149   I cid 5574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684
This theorem is referenced by:  poltletr  6134  somin1  6135
  Copyright terms: Public domain W3C validator