MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poleloe Structured version   Visualization version   GIF version

Theorem poleloe 6025
Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poleloe (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))

Proof of Theorem poleloe
StepHypRef Expression
1 brun 5121 . 2 (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 I 𝐵))
2 ideqg 5749 . . 3 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
32orbi2d 912 . 2 (𝐵𝑉 → ((𝐴𝑅𝐵𝐴 I 𝐵) ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
41, 3syl5bb 282 1 (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 843   = wceq 1539  wcel 2108  cun 3881   class class class wbr 5070   I cid 5479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587
This theorem is referenced by:  poltletr  6026  somin1  6027
  Copyright terms: Public domain W3C validator