MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poltletr Structured version   Visualization version   GIF version

Theorem poltletr 6072
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poltletr ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))

Proof of Theorem poltletr
StepHypRef Expression
1 poleloe 6071 . . . . 5 (𝐶𝑋 → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
213ad2ant3 1134 . . . 4 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
32adantl 482 . . 3 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
43anbi2d 629 . 2 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) ↔ (𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶))))
5 potr 5545 . . . . 5 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
65com12 32 . . . 4 ((𝐴𝑅𝐵𝐵𝑅𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
7 breq2 5096 . . . . . 6 (𝐵 = 𝐶 → (𝐴𝑅𝐵𝐴𝑅𝐶))
87biimpac 479 . . . . 5 ((𝐴𝑅𝐵𝐵 = 𝐶) → 𝐴𝑅𝐶)
98a1d 25 . . . 4 ((𝐴𝑅𝐵𝐵 = 𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
106, 9jaodan 955 . . 3 ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶)) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
1110com12 32 . 2 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶)) → 𝐴𝑅𝐶))
124, 11sylbid 239 1 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105  cun 3896   class class class wbr 5092   I cid 5517   Po wpo 5530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-id 5518  df-po 5532  df-xp 5626  df-rel 5627
This theorem is referenced by:  soltmin  6076
  Copyright terms: Public domain W3C validator