MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poltletr Structured version   Visualization version   GIF version

Theorem poltletr 6132
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poltletr ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))

Proof of Theorem poltletr
StepHypRef Expression
1 poleloe 6131 . . . . 5 (𝐶𝑋 → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
213ad2ant3 1135 . . . 4 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
32adantl 481 . . 3 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
43anbi2d 630 . 2 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) ↔ (𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶))))
5 potr 5585 . . . . 5 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
65com12 32 . . . 4 ((𝐴𝑅𝐵𝐵𝑅𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
7 breq2 5127 . . . . . 6 (𝐵 = 𝐶 → (𝐴𝑅𝐵𝐴𝑅𝐶))
87biimpac 478 . . . . 5 ((𝐴𝑅𝐵𝐵 = 𝐶) → 𝐴𝑅𝐶)
98a1d 25 . . . 4 ((𝐴𝑅𝐵𝐵 = 𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
106, 9jaodan 959 . . 3 ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶)) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
1110com12 32 . 2 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶)) → 𝐴𝑅𝐶))
124, 11sylbid 240 1 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  cun 3929   class class class wbr 5123   I cid 5557   Po wpo 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-po 5572  df-xp 5671  df-rel 5672
This theorem is referenced by:  soltmin  6136
  Copyright terms: Public domain W3C validator