|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > poltletr | Structured version Visualization version GIF version | ||
| Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| poltletr | ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | poleloe 6150 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) | |
| 2 | 1 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) | 
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) | 
| 4 | 3 | anbi2d 630 | . 2 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) ↔ (𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)))) | 
| 5 | potr 5604 | . . . . 5 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | |
| 6 | 5 | com12 32 | . . . 4 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) | 
| 7 | breq2 5146 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶)) | |
| 8 | 7 | biimpac 478 | . . . . 5 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵 = 𝐶) → 𝐴𝑅𝐶) | 
| 9 | 8 | a1d 25 | . . . 4 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵 = 𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) | 
| 10 | 6, 9 | jaodan 959 | . . 3 ⊢ ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) | 
| 11 | 10 | com12 32 | . 2 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)) → 𝐴𝑅𝐶)) | 
| 12 | 4, 11 | sylbid 240 | 1 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 class class class wbr 5142 I cid 5576 Po wpo 5589 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-po 5591 df-xp 5690 df-rel 5691 | 
| This theorem is referenced by: soltmin 6155 | 
| Copyright terms: Public domain | W3C validator |