MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somin1 Structured version   Visualization version   GIF version

Theorem somin1 6127
Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somin1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)

Proof of Theorem somin1
StepHypRef Expression
1 iftrue 4511 . . . . 5 (𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)
21olcd 874 . . . 4 (𝐴𝑅𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
32adantl 481 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
4 sotric 5596 . . . . . . 7 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝑅𝐴)))
5 orcom 870 . . . . . . . . 9 ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴𝐴 = 𝐵))
6 eqcom 2743 . . . . . . . . . 10 (𝐴 = 𝐵𝐵 = 𝐴)
76orbi2i 912 . . . . . . . . 9 ((𝐵𝑅𝐴𝐴 = 𝐵) ↔ (𝐵𝑅𝐴𝐵 = 𝐴))
85, 7bitri 275 . . . . . . . 8 ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴))
98notbii 320 . . . . . . 7 (¬ (𝐴 = 𝐵𝐵𝑅𝐴) ↔ ¬ (𝐵𝑅𝐴𝐵 = 𝐴))
104, 9bitrdi 287 . . . . . 6 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐵𝑅𝐴𝐵 = 𝐴)))
1110con2bid 354 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝑅𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝑅𝐵))
1211biimpar 477 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (𝐵𝑅𝐴𝐵 = 𝐴))
13 iffalse 4514 . . . . . 6 𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵)
14 breq1 5127 . . . . . . 7 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴𝐵𝑅𝐴))
15 eqeq1 2740 . . . . . . 7 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴𝐵 = 𝐴))
1614, 15orbi12d 918 . . . . . 6 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1713, 16syl 17 . . . . 5 𝐴𝑅𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1817adantl 481 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1912, 18mpbird 257 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
203, 19pm2.61dan 812 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
21 poleloe 6125 . . 3 (𝐴𝑋 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)))
2221ad2antrl 728 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)))
2320, 22mpbird 257 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3929  ifcif 4505   class class class wbr 5124   I cid 5552   Or wor 5565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666
This theorem is referenced by:  somin2  6129  soltmin  6130
  Copyright terms: Public domain W3C validator