Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  somin1 Structured version   Visualization version   GIF version

Theorem somin1 5970
 Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somin1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)

Proof of Theorem somin1
StepHypRef Expression
1 iftrue 4429 . . . . 5 (𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)
21olcd 871 . . . 4 (𝐴𝑅𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
32adantl 485 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
4 sotric 5474 . . . . . . 7 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝑅𝐴)))
5 orcom 867 . . . . . . . . 9 ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴𝐴 = 𝐵))
6 eqcom 2765 . . . . . . . . . 10 (𝐴 = 𝐵𝐵 = 𝐴)
76orbi2i 910 . . . . . . . . 9 ((𝐵𝑅𝐴𝐴 = 𝐵) ↔ (𝐵𝑅𝐴𝐵 = 𝐴))
85, 7bitri 278 . . . . . . . 8 ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴))
98notbii 323 . . . . . . 7 (¬ (𝐴 = 𝐵𝐵𝑅𝐴) ↔ ¬ (𝐵𝑅𝐴𝐵 = 𝐴))
104, 9bitrdi 290 . . . . . 6 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐵𝑅𝐴𝐵 = 𝐴)))
1110con2bid 358 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝑅𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝑅𝐵))
1211biimpar 481 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (𝐵𝑅𝐴𝐵 = 𝐴))
13 iffalse 4432 . . . . . 6 𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵)
14 breq1 5039 . . . . . . 7 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴𝐵𝑅𝐴))
15 eqeq1 2762 . . . . . . 7 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴𝐵 = 𝐴))
1614, 15orbi12d 916 . . . . . 6 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1713, 16syl 17 . . . . 5 𝐴𝑅𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1817adantl 485 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1912, 18mpbird 260 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
203, 19pm2.61dan 812 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
21 poleloe 5968 . . 3 (𝐴𝑋 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)))
2221ad2antrl 727 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)))
2320, 22mpbird 260 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111   ∪ cun 3858  ifcif 4423   class class class wbr 5036   I cid 5433   Or wor 5446 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535 This theorem is referenced by:  somin2  5972  soltmin  5973
 Copyright terms: Public domain W3C validator