Proof of Theorem somin1
Step | Hyp | Ref
| Expression |
1 | | iftrue 4429 |
. . . . 5
⊢ (𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) |
2 | 1 | olcd 871 |
. . . 4
⊢ (𝐴𝑅𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)) |
3 | 2 | adantl 485 |
. . 3
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)) |
4 | | sotric 5474 |
. . . . . . 7
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵𝑅𝐴))) |
5 | | orcom 867 |
. . . . . . . . 9
⊢ ((𝐴 = 𝐵 ∨ 𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴 ∨ 𝐴 = 𝐵)) |
6 | | eqcom 2765 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
7 | 6 | orbi2i 910 |
. . . . . . . . 9
⊢ ((𝐵𝑅𝐴 ∨ 𝐴 = 𝐵) ↔ (𝐵𝑅𝐴 ∨ 𝐵 = 𝐴)) |
8 | 5, 7 | bitri 278 |
. . . . . . . 8
⊢ ((𝐴 = 𝐵 ∨ 𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴 ∨ 𝐵 = 𝐴)) |
9 | 8 | notbii 323 |
. . . . . . 7
⊢ (¬
(𝐴 = 𝐵 ∨ 𝐵𝑅𝐴) ↔ ¬ (𝐵𝑅𝐴 ∨ 𝐵 = 𝐴)) |
10 | 4, 9 | bitrdi 290 |
. . . . . 6
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐵𝑅𝐴 ∨ 𝐵 = 𝐴))) |
11 | 10 | con2bid 358 |
. . . . 5
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐵𝑅𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴𝑅𝐵)) |
12 | 11 | biimpar 481 |
. . . 4
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (𝐵𝑅𝐴 ∨ 𝐵 = 𝐴)) |
13 | | iffalse 4432 |
. . . . . 6
⊢ (¬
𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵) |
14 | | breq1 5039 |
. . . . . . 7
⊢ (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ↔ 𝐵𝑅𝐴)) |
15 | | eqeq1 2762 |
. . . . . . 7
⊢ (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴 ↔ 𝐵 = 𝐴)) |
16 | 14, 15 | orbi12d 916 |
. . . . . 6
⊢ (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴 ∨ 𝐵 = 𝐴))) |
17 | 13, 16 | syl 17 |
. . . . 5
⊢ (¬
𝐴𝑅𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴 ∨ 𝐵 = 𝐴))) |
18 | 17 | adantl 485 |
. . . 4
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ ¬ 𝐴𝑅𝐵) → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴 ∨ 𝐵 = 𝐴))) |
19 | 12, 18 | mpbird 260 |
. . 3
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)) |
20 | 3, 19 | pm2.61dan 812 |
. 2
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)) |
21 | | poleloe 5968 |
. . 3
⊢ (𝐴 ∈ 𝑋 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))) |
22 | 21 | ad2antrl 727 |
. 2
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))) |
23 | 20, 22 | mpbird 260 |
1
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴) |