Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  somin1 Structured version   Visualization version   GIF version

Theorem somin1 5869
 Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somin1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)

Proof of Theorem somin1
StepHypRef Expression
1 iftrue 4387 . . . . 5 (𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)
21olcd 871 . . . 4 (𝐴𝑅𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
32adantl 482 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
4 sotric 5389 . . . . . . 7 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝑅𝐴)))
5 orcom 865 . . . . . . . . 9 ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴𝐴 = 𝐵))
6 eqcom 2802 . . . . . . . . . 10 (𝐴 = 𝐵𝐵 = 𝐴)
76orbi2i 907 . . . . . . . . 9 ((𝐵𝑅𝐴𝐴 = 𝐵) ↔ (𝐵𝑅𝐴𝐵 = 𝐴))
85, 7bitri 276 . . . . . . . 8 ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴))
98notbii 321 . . . . . . 7 (¬ (𝐴 = 𝐵𝐵𝑅𝐴) ↔ ¬ (𝐵𝑅𝐴𝐵 = 𝐴))
104, 9syl6bb 288 . . . . . 6 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐵𝑅𝐴𝐵 = 𝐴)))
1110con2bid 356 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝑅𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝑅𝐵))
1211biimpar 478 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (𝐵𝑅𝐴𝐵 = 𝐴))
13 iffalse 4390 . . . . . 6 𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵)
14 breq1 4965 . . . . . . 7 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴𝐵𝑅𝐴))
15 eqeq1 2799 . . . . . . 7 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴𝐵 = 𝐴))
1614, 15orbi12d 913 . . . . . 6 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1713, 16syl 17 . . . . 5 𝐴𝑅𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1817adantl 482 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1912, 18mpbird 258 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
203, 19pm2.61dan 809 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
21 poleloe 5867 . . 3 (𝐴𝑋 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)))
2221ad2antrl 724 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)))
2320, 22mpbird 258 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 842   = wceq 1522   ∈ wcel 2081   ∪ cun 3857  ifcif 4381   class class class wbr 4962   I cid 5347   Or wor 5361 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-opab 5025  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450 This theorem is referenced by:  somin2  5871  soltmin  5872
 Copyright terms: Public domain W3C validator