MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preleqALT Structured version   Visualization version   GIF version

Theorem preleqALT 9608
Description: Alternate proof of preleq 9607, not based on preleqg 9606: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
preleq.b 𝐵 ∈ V
preleqALT.d 𝐷 ∈ V
Assertion
Ref Expression
preleqALT (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem preleqALT
StepHypRef Expression
1 preleq.b . . . . . . . . . 10 𝐵 ∈ V
21jctr 524 . . . . . . . . 9 (𝐴𝐵 → (𝐴𝐵𝐵 ∈ V))
3 preleqALT.d . . . . . . . . . 10 𝐷 ∈ V
43jctr 524 . . . . . . . . 9 (𝐶𝐷 → (𝐶𝐷𝐷 ∈ V))
5 preq12bg 4846 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ V) ∧ (𝐶𝐷𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
62, 4, 5syl2an 595 . . . . . . . 8 ((𝐴𝐵𝐶𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
76biimpa 476 . . . . . . 7 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
87ord 861 . . . . . 6 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 = 𝐷𝐵 = 𝐶)))
9 en2lp 9597 . . . . . . 7 ¬ (𝐷𝐶𝐶𝐷)
10 eleq12 2815 . . . . . . . 8 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴𝐵𝐷𝐶))
1110anbi1d 629 . . . . . . 7 ((𝐴 = 𝐷𝐵 = 𝐶) → ((𝐴𝐵𝐶𝐷) ↔ (𝐷𝐶𝐶𝐷)))
129, 11mtbiri 327 . . . . . 6 ((𝐴 = 𝐷𝐵 = 𝐶) → ¬ (𝐴𝐵𝐶𝐷))
138, 12syl6 35 . . . . 5 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶𝐵 = 𝐷) → ¬ (𝐴𝐵𝐶𝐷)))
1413con4d 115 . . . 4 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴𝐵𝐶𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
1514ex 412 . . 3 ((𝐴𝐵𝐶𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴𝐵𝐶𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))))
1615pm2.43a 54 . 2 ((𝐴𝐵𝐶𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐵 = 𝐷)))
1716imp 406 1 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098  Vcvv 3466  {cpr 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-reg 9583
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-eprel 5570  df-fr 5621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator