| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preleqALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of preleq 9630, not based on preleqg 9629: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| preleq.b | ⊢ 𝐵 ∈ V |
| preleqALT.d | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| preleqALT | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preleq.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ V | |
| 2 | 1 | jctr 524 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
| 3 | preleqALT.d | . . . . . . . . . 10 ⊢ 𝐷 ∈ V | |
| 4 | 3 | jctr 524 | . . . . . . . . 9 ⊢ (𝐶 ∈ 𝐷 → (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ V)) |
| 5 | preq12bg 4829 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) | |
| 6 | 2, 4, 5 | syl2an 596 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
| 7 | 6 | biimpa 476 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 8 | 7 | ord 864 | . . . . . 6 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 9 | en2lp 9620 | . . . . . . 7 ⊢ ¬ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷) | |
| 10 | eleq12 2824 | . . . . . . . 8 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 ∈ 𝐵 ↔ 𝐷 ∈ 𝐶)) | |
| 11 | 10 | anbi1d 631 | . . . . . . 7 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ↔ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷))) |
| 12 | 9, 11 | mtbiri 327 | . . . . . 6 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷)) |
| 13 | 8, 12 | syl6 35 | . . . . 5 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷))) |
| 14 | 13 | con4d 115 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 15 | 14 | ex 412 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
| 16 | 15 | pm2.43a 54 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 17 | 16 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-reg 9606 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-eprel 5553 df-fr 5606 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |