Proof of Theorem preleqALT
| Step | Hyp | Ref
| Expression |
| 1 | | preleq.b |
. . . . . . . . . 10
⊢ 𝐵 ∈ V |
| 2 | 1 | jctr 524 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
| 3 | | preleqALT.d |
. . . . . . . . . 10
⊢ 𝐷 ∈ V |
| 4 | 3 | jctr 524 |
. . . . . . . . 9
⊢ (𝐶 ∈ 𝐷 → (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ V)) |
| 5 | | preq12bg 4807 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
| 6 | 2, 4, 5 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
| 7 | 6 | biimpa 476 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 8 | 7 | ord 864 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 9 | | en2lp 9521 |
. . . . . . 7
⊢ ¬
(𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷) |
| 10 | | eleq12 2818 |
. . . . . . . 8
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 ∈ 𝐵 ↔ 𝐷 ∈ 𝐶)) |
| 11 | 10 | anbi1d 631 |
. . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ↔ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷))) |
| 12 | 9, 11 | mtbiri 327 |
. . . . . 6
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷)) |
| 13 | 8, 12 | syl6 35 |
. . . . 5
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷))) |
| 14 | 13 | con4d 115 |
. . . 4
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 15 | 14 | ex 412 |
. . 3
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
| 16 | 15 | pm2.43a 54 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 17 | 16 | imp 406 |
1
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |