![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preleqALT | Structured version Visualization version GIF version |
Description: Alternate proof of preleq 8788, not based on preleqg 8787: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
preleq.b | ⊢ 𝐵 ∈ V |
preleqALT.d | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
preleqALT | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preleq.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ V | |
2 | 1 | jctr 522 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) |
3 | preleqALT.d | . . . . . . . . . 10 ⊢ 𝐷 ∈ V | |
4 | 3 | jctr 522 | . . . . . . . . 9 ⊢ (𝐶 ∈ 𝐷 → (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ V)) |
5 | preq12bg 4601 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) | |
6 | 2, 4, 5 | syl2an 591 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
7 | 6 | biimpa 470 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
8 | 7 | ord 897 | . . . . . 6 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
9 | en2lp 8779 | . . . . . . 7 ⊢ ¬ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷) | |
10 | eleq12 2896 | . . . . . . . 8 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 ∈ 𝐵 ↔ 𝐷 ∈ 𝐶)) | |
11 | 10 | anbi1d 625 | . . . . . . 7 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ↔ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷))) |
12 | 9, 11 | mtbiri 319 | . . . . . 6 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷)) |
13 | 8, 12 | syl6 35 | . . . . 5 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷))) |
14 | 13 | con4d 115 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
15 | 14 | ex 403 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
16 | 15 | pm2.43a 54 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
17 | 16 | imp 397 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 880 = wceq 1658 ∈ wcel 2166 Vcvv 3414 {cpr 4399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 ax-reg 8766 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4874 df-opab 4936 df-eprel 5255 df-fr 5301 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |