MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preleqALT Structured version   Visualization version   GIF version

Theorem preleqALT 9064
Description: Alternate proof of preleq 9063, not based on preleqg 9062: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
preleq.b 𝐵 ∈ V
preleqALT.d 𝐷 ∈ V
Assertion
Ref Expression
preleqALT (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem preleqALT
StepHypRef Expression
1 preleq.b . . . . . . . . . 10 𝐵 ∈ V
21jctr 528 . . . . . . . . 9 (𝐴𝐵 → (𝐴𝐵𝐵 ∈ V))
3 preleqALT.d . . . . . . . . . 10 𝐷 ∈ V
43jctr 528 . . . . . . . . 9 (𝐶𝐷 → (𝐶𝐷𝐷 ∈ V))
5 preq12bg 4744 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ V) ∧ (𝐶𝐷𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
62, 4, 5syl2an 598 . . . . . . . 8 ((𝐴𝐵𝐶𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
76biimpa 480 . . . . . . 7 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
87ord 861 . . . . . 6 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 = 𝐷𝐵 = 𝐶)))
9 en2lp 9053 . . . . . . 7 ¬ (𝐷𝐶𝐶𝐷)
10 eleq12 2879 . . . . . . . 8 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴𝐵𝐷𝐶))
1110anbi1d 632 . . . . . . 7 ((𝐴 = 𝐷𝐵 = 𝐶) → ((𝐴𝐵𝐶𝐷) ↔ (𝐷𝐶𝐶𝐷)))
129, 11mtbiri 330 . . . . . 6 ((𝐴 = 𝐷𝐵 = 𝐶) → ¬ (𝐴𝐵𝐶𝐷))
138, 12syl6 35 . . . . 5 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (¬ (𝐴 = 𝐶𝐵 = 𝐷) → ¬ (𝐴𝐵𝐶𝐷)))
1413con4d 115 . . . 4 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴𝐵𝐶𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
1514ex 416 . . 3 ((𝐴𝐵𝐶𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴𝐵𝐶𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))))
1615pm2.43a 54 . 2 ((𝐴𝐵𝐶𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐵 = 𝐷)))
1716imp 410 1 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  Vcvv 3441  {cpr 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-reg 9040
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-eprel 5430  df-fr 5478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator