MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrnb0 Structured version   Visualization version   GIF version

Theorem 1loopgrnb0 27869
Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrnb0 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)

Proof of Theorem 1loopgrnb0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 27867 . . . 4 (𝜑𝐺 ∈ USPGraph)
6 uspgrupgr 27546 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ UPGraph)
81eleq2d 2824 . . . 4 (𝜑 → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁𝑉))
93, 8mpbird 256 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
10 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
11 eqid 2738 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbupgr 27711 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
137, 9, 12syl2anc 584 . 2 (𝜑 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
141difeq1d 4056 . . . . . . . 8 (𝜑 → ((Vtx‘𝐺) ∖ {𝑁}) = (𝑉 ∖ {𝑁}))
1514eleq2d 2824 . . . . . . 7 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ↔ 𝑣 ∈ (𝑉 ∖ {𝑁})))
16 eldifsn 4720 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑣𝑉𝑣𝑁))
173adantr 481 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑁𝑉)
18 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑣𝑉)
1917, 18preqsnd 4789 . . . . . . . . . . 11 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} ↔ (𝑁 = 𝑁𝑣 = 𝑁)))
20 simpr 485 . . . . . . . . . . 11 ((𝑁 = 𝑁𝑣 = 𝑁) → 𝑣 = 𝑁)
2119, 20syl6bi 252 . . . . . . . . . 10 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} → 𝑣 = 𝑁))
2221necon3ad 2956 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑣𝑁 → ¬ {𝑁, 𝑣} = {𝑁}))
2322expimpd 454 . . . . . . . 8 (𝜑 → ((𝑣𝑉𝑣𝑁) → ¬ {𝑁, 𝑣} = {𝑁}))
2416, 23syl5bi 241 . . . . . . 7 (𝜑 → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2515, 24sylbid 239 . . . . . 6 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2625imp 407 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} = {𝑁})
271, 2, 3, 41loopgredg 27868 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
2827eleq2d 2824 . . . . . . . 8 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} ∈ {{𝑁}}))
29 prex 5355 . . . . . . . . 9 {𝑁, 𝑣} ∈ V
3029elsn 4576 . . . . . . . 8 ({𝑁, 𝑣} ∈ {{𝑁}} ↔ {𝑁, 𝑣} = {𝑁})
3128, 30bitrdi 287 . . . . . . 7 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} = {𝑁}))
3231notbid 318 . . . . . 6 (𝜑 → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3332adantr 481 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3426, 33mpbird 256 . . . 4 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3534ralrimiva 3103 . . 3 (𝜑 → ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
36 rabeq0 4318 . . 3 ({𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅ ↔ ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3735, 36sylibr 233 . 2 (𝜑 → {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅)
3813, 37eqtrd 2778 1 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cdif 3884  c0 4256  {csn 4561  {cpr 4563  cop 4567  cfv 6433  (class class class)co 7275  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UPGraphcupgr 27450  USPGraphcuspgr 27518   NeighbVtx cnbgr 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-upgr 27452  df-uspgr 27520  df-nbgr 27700
This theorem is referenced by:  uspgrloopnb0  27886
  Copyright terms: Public domain W3C validator