| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1loopgrnb0 | Structured version Visualization version GIF version | ||
| Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
| Ref | Expression |
|---|---|
| 1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| 1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
| 1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
| Ref | Expression |
|---|---|
| 1loopgrnb0 | ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
| 2 | 1loopgruspgr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 3 | 1loopgruspgr.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑉) | |
| 4 | 1loopgruspgr.i | . . . . 5 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | |
| 5 | 1, 2, 3, 4 | 1loopgruspgr 29428 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| 6 | uspgrupgr 29105 | . . . 4 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| 8 | 1 | eleq2d 2814 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ 𝑉)) |
| 9 | 3, 8 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (Vtx‘𝐺)) |
| 10 | eqid 2729 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 11 | eqid 2729 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 12 | 10, 11 | nbupgr 29271 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)}) |
| 13 | 7, 9, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)}) |
| 14 | 1 | difeq1d 4088 | . . . . . . . 8 ⊢ (𝜑 → ((Vtx‘𝐺) ∖ {𝑁}) = (𝑉 ∖ {𝑁})) |
| 15 | 14 | eleq2d 2814 | . . . . . . 7 ⊢ (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ↔ 𝑣 ∈ (𝑉 ∖ {𝑁}))) |
| 16 | eldifsn 4750 | . . . . . . . 8 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁)) | |
| 17 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
| 18 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
| 19 | 17, 18 | preqsnd 4823 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ({𝑁, 𝑣} = {𝑁} ↔ (𝑁 = 𝑁 ∧ 𝑣 = 𝑁))) |
| 20 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑁 = 𝑁 ∧ 𝑣 = 𝑁) → 𝑣 = 𝑁) | |
| 21 | 19, 20 | biimtrdi 253 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ({𝑁, 𝑣} = {𝑁} → 𝑣 = 𝑁)) |
| 22 | 21 | necon3ad 2938 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ≠ 𝑁 → ¬ {𝑁, 𝑣} = {𝑁})) |
| 23 | 22 | expimpd 453 | . . . . . . . 8 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁) → ¬ {𝑁, 𝑣} = {𝑁})) |
| 24 | 16, 23 | biimtrid 242 | . . . . . . 7 ⊢ (𝜑 → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁})) |
| 25 | 15, 24 | sylbid 240 | . . . . . 6 ⊢ (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁})) |
| 26 | 25 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} = {𝑁}) |
| 27 | 1, 2, 3, 4 | 1loopgredg 29429 | . . . . . . . . 9 ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
| 28 | 27 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} ∈ {{𝑁}})) |
| 29 | prex 5392 | . . . . . . . . 9 ⊢ {𝑁, 𝑣} ∈ V | |
| 30 | 29 | elsn 4604 | . . . . . . . 8 ⊢ ({𝑁, 𝑣} ∈ {{𝑁}} ↔ {𝑁, 𝑣} = {𝑁}) |
| 31 | 28, 30 | bitrdi 287 | . . . . . . 7 ⊢ (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} = {𝑁})) |
| 32 | 31 | notbid 318 | . . . . . 6 ⊢ (𝜑 → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁})) |
| 33 | 32 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁})) |
| 34 | 26, 33 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺)) |
| 35 | 34 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺)) |
| 36 | rabeq0 4351 | . . 3 ⊢ ({𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅ ↔ ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺)) | |
| 37 | 35, 36 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅) |
| 38 | 13, 37 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3405 ∖ cdif 3911 ∅c0 4296 {csn 4589 {cpr 4591 〈cop 4595 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 iEdgciedg 28924 Edgcedg 28974 UPGraphcupgr 29007 USPGraphcuspgr 29075 NeighbVtx cnbgr 29259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-edg 28975 df-upgr 29009 df-uspgr 29077 df-nbgr 29260 |
| This theorem is referenced by: uspgrloopnb0 29447 |
| Copyright terms: Public domain | W3C validator |