MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrnb0 Structured version   Visualization version   GIF version

Theorem 1loopgrnb0 29358
Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrnb0 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)

Proof of Theorem 1loopgrnb0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 29356 . . . 4 (𝜑𝐺 ∈ USPGraph)
6 uspgrupgr 29033 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ UPGraph)
81eleq2d 2811 . . . 4 (𝜑 → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁𝑉))
93, 8mpbird 256 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
10 eqid 2725 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
11 eqid 2725 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbupgr 29199 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
137, 9, 12syl2anc 582 . 2 (𝜑 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
141difeq1d 4113 . . . . . . . 8 (𝜑 → ((Vtx‘𝐺) ∖ {𝑁}) = (𝑉 ∖ {𝑁}))
1514eleq2d 2811 . . . . . . 7 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ↔ 𝑣 ∈ (𝑉 ∖ {𝑁})))
16 eldifsn 4786 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑣𝑉𝑣𝑁))
173adantr 479 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑁𝑉)
18 simpr 483 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑣𝑉)
1917, 18preqsnd 4855 . . . . . . . . . . 11 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} ↔ (𝑁 = 𝑁𝑣 = 𝑁)))
20 simpr 483 . . . . . . . . . . 11 ((𝑁 = 𝑁𝑣 = 𝑁) → 𝑣 = 𝑁)
2119, 20biimtrdi 252 . . . . . . . . . 10 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} → 𝑣 = 𝑁))
2221necon3ad 2943 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑣𝑁 → ¬ {𝑁, 𝑣} = {𝑁}))
2322expimpd 452 . . . . . . . 8 (𝜑 → ((𝑣𝑉𝑣𝑁) → ¬ {𝑁, 𝑣} = {𝑁}))
2416, 23biimtrid 241 . . . . . . 7 (𝜑 → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2515, 24sylbid 239 . . . . . 6 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2625imp 405 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} = {𝑁})
271, 2, 3, 41loopgredg 29357 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
2827eleq2d 2811 . . . . . . . 8 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} ∈ {{𝑁}}))
29 prex 5428 . . . . . . . . 9 {𝑁, 𝑣} ∈ V
3029elsn 4639 . . . . . . . 8 ({𝑁, 𝑣} ∈ {{𝑁}} ↔ {𝑁, 𝑣} = {𝑁})
3128, 30bitrdi 286 . . . . . . 7 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} = {𝑁}))
3231notbid 317 . . . . . 6 (𝜑 → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3332adantr 479 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3426, 33mpbird 256 . . . 4 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3534ralrimiva 3136 . . 3 (𝜑 → ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
36 rabeq0 4380 . . 3 ({𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅ ↔ ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3735, 36sylibr 233 . 2 (𝜑 → {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅)
3813, 37eqtrd 2765 1 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2930  wral 3051  {crab 3419  cdif 3937  c0 4318  {csn 4624  {cpr 4626  cop 4630  cfv 6542  (class class class)co 7415  Vtxcvtx 28851  iEdgciedg 28852  Edgcedg 28902  UPGraphcupgr 28935  USPGraphcuspgr 29003   NeighbVtx cnbgr 29187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-oadd 8487  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-n0 12501  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13515  df-hash 14320  df-edg 28903  df-upgr 28937  df-uspgr 29005  df-nbgr 29188
This theorem is referenced by:  uspgrloopnb0  29375
  Copyright terms: Public domain W3C validator