MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrnb0 Structured version   Visualization version   GIF version

Theorem 1loopgrnb0 27772
Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrnb0 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)

Proof of Theorem 1loopgrnb0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 27770 . . . 4 (𝜑𝐺 ∈ USPGraph)
6 uspgrupgr 27449 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ UPGraph)
81eleq2d 2824 . . . 4 (𝜑 → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁𝑉))
93, 8mpbird 256 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
10 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
11 eqid 2738 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbupgr 27614 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
137, 9, 12syl2anc 583 . 2 (𝜑 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
141difeq1d 4052 . . . . . . . 8 (𝜑 → ((Vtx‘𝐺) ∖ {𝑁}) = (𝑉 ∖ {𝑁}))
1514eleq2d 2824 . . . . . . 7 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ↔ 𝑣 ∈ (𝑉 ∖ {𝑁})))
16 eldifsn 4717 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑣𝑉𝑣𝑁))
173adantr 480 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑁𝑉)
18 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑣𝑉)
1917, 18preqsnd 4786 . . . . . . . . . . 11 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} ↔ (𝑁 = 𝑁𝑣 = 𝑁)))
20 simpr 484 . . . . . . . . . . 11 ((𝑁 = 𝑁𝑣 = 𝑁) → 𝑣 = 𝑁)
2119, 20syl6bi 252 . . . . . . . . . 10 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} → 𝑣 = 𝑁))
2221necon3ad 2955 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑣𝑁 → ¬ {𝑁, 𝑣} = {𝑁}))
2322expimpd 453 . . . . . . . 8 (𝜑 → ((𝑣𝑉𝑣𝑁) → ¬ {𝑁, 𝑣} = {𝑁}))
2416, 23syl5bi 241 . . . . . . 7 (𝜑 → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2515, 24sylbid 239 . . . . . 6 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2625imp 406 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} = {𝑁})
271, 2, 3, 41loopgredg 27771 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
2827eleq2d 2824 . . . . . . . 8 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} ∈ {{𝑁}}))
29 prex 5350 . . . . . . . . 9 {𝑁, 𝑣} ∈ V
3029elsn 4573 . . . . . . . 8 ({𝑁, 𝑣} ∈ {{𝑁}} ↔ {𝑁, 𝑣} = {𝑁})
3128, 30bitrdi 286 . . . . . . 7 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} = {𝑁}))
3231notbid 317 . . . . . 6 (𝜑 → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3332adantr 480 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3426, 33mpbird 256 . . . 4 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3534ralrimiva 3107 . . 3 (𝜑 → ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
36 rabeq0 4315 . . 3 ({𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅ ↔ ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3735, 36sylibr 233 . 2 (𝜑 → {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅)
3813, 37eqtrd 2778 1 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  cdif 3880  c0 4253  {csn 4558  {cpr 4560  cop 4564  cfv 6418  (class class class)co 7255  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UPGraphcupgr 27353  USPGraphcuspgr 27421   NeighbVtx cnbgr 27602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-upgr 27355  df-uspgr 27423  df-nbgr 27603
This theorem is referenced by:  uspgrloopnb0  27789
  Copyright terms: Public domain W3C validator