![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1loopgrnb0 | Structured version Visualization version GIF version |
Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
Ref | Expression |
---|---|
1loopgrnb0 | ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1loopgruspgr.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
2 | 1loopgruspgr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
3 | 1loopgruspgr.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑉) | |
4 | 1loopgruspgr.i | . . . . 5 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | |
5 | 1, 2, 3, 4 | 1loopgruspgr 29536 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
6 | uspgrupgr 29213 | . . . 4 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
8 | 1 | eleq2d 2830 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ 𝑉)) |
9 | 3, 8 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (Vtx‘𝐺)) |
10 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
11 | eqid 2740 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
12 | 10, 11 | nbupgr 29379 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)}) |
13 | 7, 9, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)}) |
14 | 1 | difeq1d 4148 | . . . . . . . 8 ⊢ (𝜑 → ((Vtx‘𝐺) ∖ {𝑁}) = (𝑉 ∖ {𝑁})) |
15 | 14 | eleq2d 2830 | . . . . . . 7 ⊢ (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ↔ 𝑣 ∈ (𝑉 ∖ {𝑁}))) |
16 | eldifsn 4811 | . . . . . . . 8 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁)) | |
17 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
18 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
19 | 17, 18 | preqsnd 4883 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ({𝑁, 𝑣} = {𝑁} ↔ (𝑁 = 𝑁 ∧ 𝑣 = 𝑁))) |
20 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑁 = 𝑁 ∧ 𝑣 = 𝑁) → 𝑣 = 𝑁) | |
21 | 19, 20 | biimtrdi 253 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ({𝑁, 𝑣} = {𝑁} → 𝑣 = 𝑁)) |
22 | 21 | necon3ad 2959 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ≠ 𝑁 → ¬ {𝑁, 𝑣} = {𝑁})) |
23 | 22 | expimpd 453 | . . . . . . . 8 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁) → ¬ {𝑁, 𝑣} = {𝑁})) |
24 | 16, 23 | biimtrid 242 | . . . . . . 7 ⊢ (𝜑 → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁})) |
25 | 15, 24 | sylbid 240 | . . . . . 6 ⊢ (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁})) |
26 | 25 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} = {𝑁}) |
27 | 1, 2, 3, 4 | 1loopgredg 29537 | . . . . . . . . 9 ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
28 | 27 | eleq2d 2830 | . . . . . . . 8 ⊢ (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} ∈ {{𝑁}})) |
29 | prex 5452 | . . . . . . . . 9 ⊢ {𝑁, 𝑣} ∈ V | |
30 | 29 | elsn 4663 | . . . . . . . 8 ⊢ ({𝑁, 𝑣} ∈ {{𝑁}} ↔ {𝑁, 𝑣} = {𝑁}) |
31 | 28, 30 | bitrdi 287 | . . . . . . 7 ⊢ (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} = {𝑁})) |
32 | 31 | notbid 318 | . . . . . 6 ⊢ (𝜑 → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁})) |
33 | 32 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁})) |
34 | 26, 33 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺)) |
35 | 34 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺)) |
36 | rabeq0 4411 | . . 3 ⊢ ({𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅ ↔ ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺)) | |
37 | 35, 36 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅) |
38 | 13, 37 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 {crab 3443 ∖ cdif 3973 ∅c0 4352 {csn 4648 {cpr 4650 〈cop 4654 ‘cfv 6573 (class class class)co 7448 Vtxcvtx 29031 iEdgciedg 29032 Edgcedg 29082 UPGraphcupgr 29115 USPGraphcuspgr 29183 NeighbVtx cnbgr 29367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 df-edg 29083 df-upgr 29117 df-uspgr 29185 df-nbgr 29368 |
This theorem is referenced by: uspgrloopnb0 29555 |
Copyright terms: Public domain | W3C validator |