MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrnb0 Structured version   Visualization version   GIF version

Theorem 1loopgrnb0 29268
Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrnb0 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)

Proof of Theorem 1loopgrnb0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 29266 . . . 4 (𝜑𝐺 ∈ USPGraph)
6 uspgrupgr 28944 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ UPGraph)
81eleq2d 2813 . . . 4 (𝜑 → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁𝑉))
93, 8mpbird 257 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
10 eqid 2726 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
11 eqid 2726 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbupgr 29109 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
137, 9, 12syl2anc 583 . 2 (𝜑 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)})
141difeq1d 4116 . . . . . . . 8 (𝜑 → ((Vtx‘𝐺) ∖ {𝑁}) = (𝑉 ∖ {𝑁}))
1514eleq2d 2813 . . . . . . 7 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ↔ 𝑣 ∈ (𝑉 ∖ {𝑁})))
16 eldifsn 4785 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑣𝑉𝑣𝑁))
173adantr 480 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑁𝑉)
18 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑣𝑉) → 𝑣𝑉)
1917, 18preqsnd 4854 . . . . . . . . . . 11 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} ↔ (𝑁 = 𝑁𝑣 = 𝑁)))
20 simpr 484 . . . . . . . . . . 11 ((𝑁 = 𝑁𝑣 = 𝑁) → 𝑣 = 𝑁)
2119, 20biimtrdi 252 . . . . . . . . . 10 ((𝜑𝑣𝑉) → ({𝑁, 𝑣} = {𝑁} → 𝑣 = 𝑁))
2221necon3ad 2947 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑣𝑁 → ¬ {𝑁, 𝑣} = {𝑁}))
2322expimpd 453 . . . . . . . 8 (𝜑 → ((𝑣𝑉𝑣𝑁) → ¬ {𝑁, 𝑣} = {𝑁}))
2416, 23biimtrid 241 . . . . . . 7 (𝜑 → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2515, 24sylbid 239 . . . . . 6 (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁}))
2625imp 406 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} = {𝑁})
271, 2, 3, 41loopgredg 29267 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
2827eleq2d 2813 . . . . . . . 8 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} ∈ {{𝑁}}))
29 prex 5425 . . . . . . . . 9 {𝑁, 𝑣} ∈ V
3029elsn 4638 . . . . . . . 8 ({𝑁, 𝑣} ∈ {{𝑁}} ↔ {𝑁, 𝑣} = {𝑁})
3128, 30bitrdi 287 . . . . . . 7 (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} = {𝑁}))
3231notbid 318 . . . . . 6 (𝜑 → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3332adantr 480 . . . . 5 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁}))
3426, 33mpbird 257 . . . 4 ((𝜑𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3534ralrimiva 3140 . . 3 (𝜑 → ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
36 rabeq0 4379 . . 3 ({𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅ ↔ ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺))
3735, 36sylibr 233 . 2 (𝜑 → {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅)
3813, 37eqtrd 2766 1 (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2934  wral 3055  {crab 3426  cdif 3940  c0 4317  {csn 4623  {cpr 4625  cop 4629  cfv 6537  (class class class)co 7405  Vtxcvtx 28764  iEdgciedg 28765  Edgcedg 28815  UPGraphcupgr 28848  USPGraphcuspgr 28916   NeighbVtx cnbgr 29097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296  df-edg 28816  df-upgr 28850  df-uspgr 28918  df-nbgr 29098
This theorem is referenced by:  uspgrloopnb0  29285
  Copyright terms: Public domain W3C validator