Proof of Theorem usgrexmpldifpr
Step | Hyp | Ref
| Expression |
1 | | 0z 12330 |
. . . . . 6
⊢ 0 ∈
ℤ |
2 | | 1z 12350 |
. . . . . 6
⊢ 1 ∈
ℤ |
3 | 1, 2 | pm3.2i 471 |
. . . . 5
⊢ (0 ∈
ℤ ∧ 1 ∈ ℤ) |
4 | | 2z 12352 |
. . . . . 6
⊢ 2 ∈
ℤ |
5 | 2, 4 | pm3.2i 471 |
. . . . 5
⊢ (1 ∈
ℤ ∧ 2 ∈ ℤ) |
6 | 3, 5 | pm3.2i 471 |
. . . 4
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈
ℤ)) |
7 | | ax-1ne0 10940 |
. . . . . . 7
⊢ 1 ≠
0 |
8 | 7 | necomi 2998 |
. . . . . 6
⊢ 0 ≠
1 |
9 | | 2ne0 12077 |
. . . . . . 7
⊢ 2 ≠
0 |
10 | 9 | necomi 2998 |
. . . . . 6
⊢ 0 ≠
2 |
11 | 8, 10 | pm3.2i 471 |
. . . . 5
⊢ (0 ≠ 1
∧ 0 ≠ 2) |
12 | 11 | orci 862 |
. . . 4
⊢ ((0 ≠
1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2)) |
13 | | prneimg 4785 |
. . . 4
⊢ (((0
∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈
ℤ)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2))
→ {0, 1} ≠ {1, 2})) |
14 | 6, 12, 13 | mp2 9 |
. . 3
⊢ {0, 1}
≠ {1, 2} |
15 | 4, 1 | pm3.2i 471 |
. . . . 5
⊢ (2 ∈
ℤ ∧ 0 ∈ ℤ) |
16 | 3, 15 | pm3.2i 471 |
. . . 4
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈
ℤ)) |
17 | | 1ne2 12181 |
. . . . . 6
⊢ 1 ≠
2 |
18 | 17, 7 | pm3.2i 471 |
. . . . 5
⊢ (1 ≠ 2
∧ 1 ≠ 0) |
19 | 18 | olci 863 |
. . . 4
⊢ ((0 ≠
2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0)) |
20 | | prneimg 4785 |
. . . 4
⊢ (((0
∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈
ℤ)) → (((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0))
→ {0, 1} ≠ {2, 0})) |
21 | 16, 19, 20 | mp2 9 |
. . 3
⊢ {0, 1}
≠ {2, 0} |
22 | | 3nn 12052 |
. . . . . 6
⊢ 3 ∈
ℕ |
23 | 1, 22 | pm3.2i 471 |
. . . . 5
⊢ (0 ∈
ℤ ∧ 3 ∈ ℕ) |
24 | 3, 23 | pm3.2i 471 |
. . . 4
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈
ℕ)) |
25 | | 1re 10975 |
. . . . . . 7
⊢ 1 ∈
ℝ |
26 | | 1lt3 12146 |
. . . . . . 7
⊢ 1 <
3 |
27 | 25, 26 | ltneii 11088 |
. . . . . 6
⊢ 1 ≠
3 |
28 | 7, 27 | pm3.2i 471 |
. . . . 5
⊢ (1 ≠ 0
∧ 1 ≠ 3) |
29 | 28 | olci 863 |
. . . 4
⊢ ((0 ≠
0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3)) |
30 | | prneimg 4785 |
. . . 4
⊢ (((0
∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈
ℕ)) → (((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3))
→ {0, 1} ≠ {0, 3})) |
31 | 24, 29, 30 | mp2 9 |
. . 3
⊢ {0, 1}
≠ {0, 3} |
32 | 14, 21, 31 | 3pm3.2i 1338 |
. 2
⊢ ({0, 1}
≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) |
33 | 5, 15 | pm3.2i 471 |
. . . 4
⊢ ((1
∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈
ℤ)) |
34 | 18 | orci 862 |
. . . 4
⊢ ((1 ≠
2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0)) |
35 | | prneimg 4785 |
. . . 4
⊢ (((1
∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈
ℤ)) → (((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0))
→ {1, 2} ≠ {2, 0})) |
36 | 33, 34, 35 | mp2 9 |
. . 3
⊢ {1, 2}
≠ {2, 0} |
37 | 5, 23 | pm3.2i 471 |
. . . 4
⊢ ((1
∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈
ℕ)) |
38 | 28 | orci 862 |
. . . 4
⊢ ((1 ≠
0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) |
39 | | prneimg 4785 |
. . . 4
⊢ (((1
∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈
ℕ)) → (((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3))
→ {1, 2} ≠ {0, 3})) |
40 | 37, 38, 39 | mp2 9 |
. . 3
⊢ {1, 2}
≠ {0, 3} |
41 | 15, 23 | pm3.2i 471 |
. . . 4
⊢ ((2
∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈
ℕ)) |
42 | | 2re 12047 |
. . . . . . 7
⊢ 2 ∈
ℝ |
43 | | 2lt3 12145 |
. . . . . . 7
⊢ 2 <
3 |
44 | 42, 43 | ltneii 11088 |
. . . . . 6
⊢ 2 ≠
3 |
45 | 9, 44 | pm3.2i 471 |
. . . . 5
⊢ (2 ≠ 0
∧ 2 ≠ 3) |
46 | 45 | orci 862 |
. . . 4
⊢ ((2 ≠
0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3)) |
47 | | prneimg 4785 |
. . . 4
⊢ (((2
∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈
ℕ)) → (((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3))
→ {2, 0} ≠ {0, 3})) |
48 | 41, 46, 47 | mp2 9 |
. . 3
⊢ {2, 0}
≠ {0, 3} |
49 | 36, 40, 48 | 3pm3.2i 1338 |
. 2
⊢ ({1, 2}
≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}) |
50 | 32, 49 | pm3.2i 471 |
1
⊢ (({0, 1}
≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2}
≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0,
3})) |