MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexmpldifpr Structured version   Visualization version   GIF version

Theorem usgrexmpldifpr 28515
Description: Lemma for usgrexmpledg 28519: all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Assertion
Ref Expression
usgrexmpldifpr (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))

Proof of Theorem usgrexmpldifpr
StepHypRef Expression
1 0z 12569 . . . . . 6 0 ∈ ℤ
2 1z 12592 . . . . . 6 1 ∈ ℤ
31, 2pm3.2i 472 . . . . 5 (0 ∈ ℤ ∧ 1 ∈ ℤ)
4 2z 12594 . . . . . 6 2 ∈ ℤ
52, 4pm3.2i 472 . . . . 5 (1 ∈ ℤ ∧ 2 ∈ ℤ)
63, 5pm3.2i 472 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ))
7 ax-1ne0 11179 . . . . . . 7 1 ≠ 0
87necomi 2996 . . . . . 6 0 ≠ 1
9 2ne0 12316 . . . . . . 7 2 ≠ 0
109necomi 2996 . . . . . 6 0 ≠ 2
118, 10pm3.2i 472 . . . . 5 (0 ≠ 1 ∧ 0 ≠ 2)
1211orci 864 . . . 4 ((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2))
13 prneimg 4856 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2)) → {0, 1} ≠ {1, 2}))
146, 12, 13mp2 9 . . 3 {0, 1} ≠ {1, 2}
154, 1pm3.2i 472 . . . . 5 (2 ∈ ℤ ∧ 0 ∈ ℤ)
163, 15pm3.2i 472 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
17 1ne2 12420 . . . . . 6 1 ≠ 2
1817, 7pm3.2i 472 . . . . 5 (1 ≠ 2 ∧ 1 ≠ 0)
1918olci 865 . . . 4 ((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0))
20 prneimg 4856 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0)) → {0, 1} ≠ {2, 0}))
2116, 19, 20mp2 9 . . 3 {0, 1} ≠ {2, 0}
22 3nn 12291 . . . . . 6 3 ∈ ℕ
231, 22pm3.2i 472 . . . . 5 (0 ∈ ℤ ∧ 3 ∈ ℕ)
243, 23pm3.2i 472 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
25 1re 11214 . . . . . . 7 1 ∈ ℝ
26 1lt3 12385 . . . . . . 7 1 < 3
2725, 26ltneii 11327 . . . . . 6 1 ≠ 3
287, 27pm3.2i 472 . . . . 5 (1 ≠ 0 ∧ 1 ≠ 3)
2928olci 865 . . . 4 ((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3))
30 prneimg 4856 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3)) → {0, 1} ≠ {0, 3}))
3124, 29, 30mp2 9 . . 3 {0, 1} ≠ {0, 3}
3214, 21, 313pm3.2i 1340 . 2 ({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3})
335, 15pm3.2i 472 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
3418orci 864 . . . 4 ((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0))
35 prneimg 4856 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0)) → {1, 2} ≠ {2, 0}))
3633, 34, 35mp2 9 . . 3 {1, 2} ≠ {2, 0}
375, 23pm3.2i 472 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
3828orci 864 . . . 4 ((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3))
39 prneimg 4856 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) → {1, 2} ≠ {0, 3}))
4037, 38, 39mp2 9 . . 3 {1, 2} ≠ {0, 3}
4115, 23pm3.2i 472 . . . 4 ((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
42 2re 12286 . . . . . . 7 2 ∈ ℝ
43 2lt3 12384 . . . . . . 7 2 < 3
4442, 43ltneii 11327 . . . . . 6 2 ≠ 3
459, 44pm3.2i 472 . . . . 5 (2 ≠ 0 ∧ 2 ≠ 3)
4645orci 864 . . . 4 ((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3))
47 prneimg 4856 . . . 4 (((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3)) → {2, 0} ≠ {0, 3}))
4841, 46, 47mp2 9 . . 3 {2, 0} ≠ {0, 3}
4936, 40, 483pm3.2i 1340 . 2 ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})
5032, 49pm3.2i 472 1 (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
Colors of variables: wff setvar class
Syntax hints:  wa 397  wo 846  w3a 1088  wcel 2107  wne 2941  {cpr 4631  0cc0 11110  1c1 11111  cn 12212  2c2 12267  3c3 12268  cz 12558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-z 12559
This theorem is referenced by:  usgrexmplef  28516  usgrexmpledg  28519
  Copyright terms: Public domain W3C validator