MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexmpldifpr Structured version   Visualization version   GIF version

Theorem usgrexmpldifpr 28248
Description: Lemma for usgrexmpledg 28252: all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Assertion
Ref Expression
usgrexmpldifpr (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))

Proof of Theorem usgrexmpldifpr
StepHypRef Expression
1 0z 12517 . . . . . 6 0 ∈ ℤ
2 1z 12540 . . . . . 6 1 ∈ ℤ
31, 2pm3.2i 472 . . . . 5 (0 ∈ ℤ ∧ 1 ∈ ℤ)
4 2z 12542 . . . . . 6 2 ∈ ℤ
52, 4pm3.2i 472 . . . . 5 (1 ∈ ℤ ∧ 2 ∈ ℤ)
63, 5pm3.2i 472 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ))
7 ax-1ne0 11127 . . . . . . 7 1 ≠ 0
87necomi 2999 . . . . . 6 0 ≠ 1
9 2ne0 12264 . . . . . . 7 2 ≠ 0
109necomi 2999 . . . . . 6 0 ≠ 2
118, 10pm3.2i 472 . . . . 5 (0 ≠ 1 ∧ 0 ≠ 2)
1211orci 864 . . . 4 ((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2))
13 prneimg 4817 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2)) → {0, 1} ≠ {1, 2}))
146, 12, 13mp2 9 . . 3 {0, 1} ≠ {1, 2}
154, 1pm3.2i 472 . . . . 5 (2 ∈ ℤ ∧ 0 ∈ ℤ)
163, 15pm3.2i 472 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
17 1ne2 12368 . . . . . 6 1 ≠ 2
1817, 7pm3.2i 472 . . . . 5 (1 ≠ 2 ∧ 1 ≠ 0)
1918olci 865 . . . 4 ((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0))
20 prneimg 4817 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0)) → {0, 1} ≠ {2, 0}))
2116, 19, 20mp2 9 . . 3 {0, 1} ≠ {2, 0}
22 3nn 12239 . . . . . 6 3 ∈ ℕ
231, 22pm3.2i 472 . . . . 5 (0 ∈ ℤ ∧ 3 ∈ ℕ)
243, 23pm3.2i 472 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
25 1re 11162 . . . . . . 7 1 ∈ ℝ
26 1lt3 12333 . . . . . . 7 1 < 3
2725, 26ltneii 11275 . . . . . 6 1 ≠ 3
287, 27pm3.2i 472 . . . . 5 (1 ≠ 0 ∧ 1 ≠ 3)
2928olci 865 . . . 4 ((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3))
30 prneimg 4817 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3)) → {0, 1} ≠ {0, 3}))
3124, 29, 30mp2 9 . . 3 {0, 1} ≠ {0, 3}
3214, 21, 313pm3.2i 1340 . 2 ({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3})
335, 15pm3.2i 472 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
3418orci 864 . . . 4 ((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0))
35 prneimg 4817 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0)) → {1, 2} ≠ {2, 0}))
3633, 34, 35mp2 9 . . 3 {1, 2} ≠ {2, 0}
375, 23pm3.2i 472 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
3828orci 864 . . . 4 ((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3))
39 prneimg 4817 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) → {1, 2} ≠ {0, 3}))
4037, 38, 39mp2 9 . . 3 {1, 2} ≠ {0, 3}
4115, 23pm3.2i 472 . . . 4 ((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
42 2re 12234 . . . . . . 7 2 ∈ ℝ
43 2lt3 12332 . . . . . . 7 2 < 3
4442, 43ltneii 11275 . . . . . 6 2 ≠ 3
459, 44pm3.2i 472 . . . . 5 (2 ≠ 0 ∧ 2 ≠ 3)
4645orci 864 . . . 4 ((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3))
47 prneimg 4817 . . . 4 (((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3)) → {2, 0} ≠ {0, 3}))
4841, 46, 47mp2 9 . . 3 {2, 0} ≠ {0, 3}
4936, 40, 483pm3.2i 1340 . 2 ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})
5032, 49pm3.2i 472 1 (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
Colors of variables: wff setvar class
Syntax hints:  wa 397  wo 846  w3a 1088  wcel 2107  wne 2944  {cpr 4593  0cc0 11058  1c1 11059  cn 12160  2c2 12215  3c3 12216  cz 12506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-z 12507
This theorem is referenced by:  usgrexmplef  28249  usgrexmpledg  28252
  Copyright terms: Public domain W3C validator