MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexmpldifpr Structured version   Visualization version   GIF version

Theorem usgrexmpldifpr 28512
Description: Lemma for usgrexmpledg 28516: all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Assertion
Ref Expression
usgrexmpldifpr (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))

Proof of Theorem usgrexmpldifpr
StepHypRef Expression
1 0z 12568 . . . . . 6 0 ∈ ℤ
2 1z 12591 . . . . . 6 1 ∈ ℤ
31, 2pm3.2i 471 . . . . 5 (0 ∈ ℤ ∧ 1 ∈ ℤ)
4 2z 12593 . . . . . 6 2 ∈ ℤ
52, 4pm3.2i 471 . . . . 5 (1 ∈ ℤ ∧ 2 ∈ ℤ)
63, 5pm3.2i 471 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ))
7 ax-1ne0 11178 . . . . . . 7 1 ≠ 0
87necomi 2995 . . . . . 6 0 ≠ 1
9 2ne0 12315 . . . . . . 7 2 ≠ 0
109necomi 2995 . . . . . 6 0 ≠ 2
118, 10pm3.2i 471 . . . . 5 (0 ≠ 1 ∧ 0 ≠ 2)
1211orci 863 . . . 4 ((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2))
13 prneimg 4855 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2)) → {0, 1} ≠ {1, 2}))
146, 12, 13mp2 9 . . 3 {0, 1} ≠ {1, 2}
154, 1pm3.2i 471 . . . . 5 (2 ∈ ℤ ∧ 0 ∈ ℤ)
163, 15pm3.2i 471 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
17 1ne2 12419 . . . . . 6 1 ≠ 2
1817, 7pm3.2i 471 . . . . 5 (1 ≠ 2 ∧ 1 ≠ 0)
1918olci 864 . . . 4 ((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0))
20 prneimg 4855 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0)) → {0, 1} ≠ {2, 0}))
2116, 19, 20mp2 9 . . 3 {0, 1} ≠ {2, 0}
22 3nn 12290 . . . . . 6 3 ∈ ℕ
231, 22pm3.2i 471 . . . . 5 (0 ∈ ℤ ∧ 3 ∈ ℕ)
243, 23pm3.2i 471 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
25 1re 11213 . . . . . . 7 1 ∈ ℝ
26 1lt3 12384 . . . . . . 7 1 < 3
2725, 26ltneii 11326 . . . . . 6 1 ≠ 3
287, 27pm3.2i 471 . . . . 5 (1 ≠ 0 ∧ 1 ≠ 3)
2928olci 864 . . . 4 ((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3))
30 prneimg 4855 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3)) → {0, 1} ≠ {0, 3}))
3124, 29, 30mp2 9 . . 3 {0, 1} ≠ {0, 3}
3214, 21, 313pm3.2i 1339 . 2 ({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3})
335, 15pm3.2i 471 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
3418orci 863 . . . 4 ((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0))
35 prneimg 4855 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0)) → {1, 2} ≠ {2, 0}))
3633, 34, 35mp2 9 . . 3 {1, 2} ≠ {2, 0}
375, 23pm3.2i 471 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
3828orci 863 . . . 4 ((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3))
39 prneimg 4855 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) → {1, 2} ≠ {0, 3}))
4037, 38, 39mp2 9 . . 3 {1, 2} ≠ {0, 3}
4115, 23pm3.2i 471 . . . 4 ((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
42 2re 12285 . . . . . . 7 2 ∈ ℝ
43 2lt3 12383 . . . . . . 7 2 < 3
4442, 43ltneii 11326 . . . . . 6 2 ≠ 3
459, 44pm3.2i 471 . . . . 5 (2 ≠ 0 ∧ 2 ≠ 3)
4645orci 863 . . . 4 ((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3))
47 prneimg 4855 . . . 4 (((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3)) → {2, 0} ≠ {0, 3}))
4841, 46, 47mp2 9 . . 3 {2, 0} ≠ {0, 3}
4936, 40, 483pm3.2i 1339 . 2 ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})
5032, 49pm3.2i 471 1 (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 845  w3a 1087  wcel 2106  wne 2940  {cpr 4630  0cc0 11109  1c1 11110  cn 12211  2c2 12266  3c3 12267  cz 12557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-z 12558
This theorem is referenced by:  usgrexmplef  28513  usgrexmpledg  28516
  Copyright terms: Public domain W3C validator