MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexmpldifpr Structured version   Visualization version   GIF version

Theorem usgrexmpldifpr 27625
Description: Lemma for usgrexmpledg 27629: all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Assertion
Ref Expression
usgrexmpldifpr (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))

Proof of Theorem usgrexmpldifpr
StepHypRef Expression
1 0z 12330 . . . . . 6 0 ∈ ℤ
2 1z 12350 . . . . . 6 1 ∈ ℤ
31, 2pm3.2i 471 . . . . 5 (0 ∈ ℤ ∧ 1 ∈ ℤ)
4 2z 12352 . . . . . 6 2 ∈ ℤ
52, 4pm3.2i 471 . . . . 5 (1 ∈ ℤ ∧ 2 ∈ ℤ)
63, 5pm3.2i 471 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ))
7 ax-1ne0 10940 . . . . . . 7 1 ≠ 0
87necomi 2998 . . . . . 6 0 ≠ 1
9 2ne0 12077 . . . . . . 7 2 ≠ 0
109necomi 2998 . . . . . 6 0 ≠ 2
118, 10pm3.2i 471 . . . . 5 (0 ≠ 1 ∧ 0 ≠ 2)
1211orci 862 . . . 4 ((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2))
13 prneimg 4785 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2)) → {0, 1} ≠ {1, 2}))
146, 12, 13mp2 9 . . 3 {0, 1} ≠ {1, 2}
154, 1pm3.2i 471 . . . . 5 (2 ∈ ℤ ∧ 0 ∈ ℤ)
163, 15pm3.2i 471 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
17 1ne2 12181 . . . . . 6 1 ≠ 2
1817, 7pm3.2i 471 . . . . 5 (1 ≠ 2 ∧ 1 ≠ 0)
1918olci 863 . . . 4 ((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0))
20 prneimg 4785 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0)) → {0, 1} ≠ {2, 0}))
2116, 19, 20mp2 9 . . 3 {0, 1} ≠ {2, 0}
22 3nn 12052 . . . . . 6 3 ∈ ℕ
231, 22pm3.2i 471 . . . . 5 (0 ∈ ℤ ∧ 3 ∈ ℕ)
243, 23pm3.2i 471 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
25 1re 10975 . . . . . . 7 1 ∈ ℝ
26 1lt3 12146 . . . . . . 7 1 < 3
2725, 26ltneii 11088 . . . . . 6 1 ≠ 3
287, 27pm3.2i 471 . . . . 5 (1 ≠ 0 ∧ 1 ≠ 3)
2928olci 863 . . . 4 ((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3))
30 prneimg 4785 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3)) → {0, 1} ≠ {0, 3}))
3124, 29, 30mp2 9 . . 3 {0, 1} ≠ {0, 3}
3214, 21, 313pm3.2i 1338 . 2 ({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3})
335, 15pm3.2i 471 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
3418orci 862 . . . 4 ((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0))
35 prneimg 4785 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0)) → {1, 2} ≠ {2, 0}))
3633, 34, 35mp2 9 . . 3 {1, 2} ≠ {2, 0}
375, 23pm3.2i 471 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
3828orci 862 . . . 4 ((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3))
39 prneimg 4785 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) → {1, 2} ≠ {0, 3}))
4037, 38, 39mp2 9 . . 3 {1, 2} ≠ {0, 3}
4115, 23pm3.2i 471 . . . 4 ((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
42 2re 12047 . . . . . . 7 2 ∈ ℝ
43 2lt3 12145 . . . . . . 7 2 < 3
4442, 43ltneii 11088 . . . . . 6 2 ≠ 3
459, 44pm3.2i 471 . . . . 5 (2 ≠ 0 ∧ 2 ≠ 3)
4645orci 862 . . . 4 ((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3))
47 prneimg 4785 . . . 4 (((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3)) → {2, 0} ≠ {0, 3}))
4841, 46, 47mp2 9 . . 3 {2, 0} ≠ {0, 3}
4936, 40, 483pm3.2i 1338 . 2 ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})
5032, 49pm3.2i 471 1 (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 844  w3a 1086  wcel 2106  wne 2943  {cpr 4563  0cc0 10871  1c1 10872  cn 11973  2c2 12028  3c3 12029  cz 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-z 12320
This theorem is referenced by:  usgrexmplef  27626  usgrexmpledg  27629
  Copyright terms: Public domain W3C validator