Users' Mathboxes Mathbox for Filip Cernatescu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  problem1 Structured version   Visualization version   GIF version

Theorem problem1 35178
Description: Practice problem 1. Clues: 5p4e9 12374 3p2e5 12367 eqtri 2754 oveq1i 7415. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
problem1 ((3 + 2) + 4) = 9

Proof of Theorem problem1
StepHypRef Expression
1 3p2e5 12367 . . 3 (3 + 2) = 5
21oveq1i 7415 . 2 ((3 + 2) + 4) = (5 + 4)
3 5p4e9 12374 . 2 (5 + 4) = 9
42, 3eqtri 2754 1 ((3 + 2) + 4) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  (class class class)co 7405   + caddc 11115  2c2 12271  3c3 12272  4c4 12273  5c5 12274  9c9 12278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-1cn 11170  ax-addcl 11172  ax-addass 11177
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6489  df-fv 6545  df-ov 7408  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator