Users' Mathboxes Mathbox for Filip Cernatescu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  problem1 Structured version   Visualization version   GIF version

Theorem problem1 35650
Description: Practice problem 1. Clues: 5p4e9 12422 3p2e5 12415 eqtri 2763 oveq1i 7441. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
problem1 ((3 + 2) + 4) = 9

Proof of Theorem problem1
StepHypRef Expression
1 3p2e5 12415 . . 3 (3 + 2) = 5
21oveq1i 7441 . 2 ((3 + 2) + 4) = (5 + 4)
3 5p4e9 12422 . 2 (5 + 4) = 9
42, 3eqtri 2763 1 ((3 + 2) + 4) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7431   + caddc 11156  2c2 12319  3c3 12320  4c4 12321  5c5 12322  9c9 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-1cn 11211  ax-addcl 11213  ax-addass 11218
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator