Users' Mathboxes Mathbox for Filip Cernatescu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  problem1 Structured version   Visualization version   GIF version

Theorem problem1 35652
Description: Practice problem 1. Clues: 5p4e9 12345 3p2e5 12338 eqtri 2753 oveq1i 7399. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
problem1 ((3 + 2) + 4) = 9

Proof of Theorem problem1
StepHypRef Expression
1 3p2e5 12338 . . 3 (3 + 2) = 5
21oveq1i 7399 . 2 ((3 + 2) + 4) = (5 + 4)
3 5p4e9 12345 . 2 (5 + 4) = 9
42, 3eqtri 2753 1 ((3 + 2) + 4) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7389   + caddc 11077  2c2 12242  3c3 12243  4c4 12244  5c5 12245  9c9 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-1cn 11132  ax-addcl 11134  ax-addass 11139
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator