Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem1 | Structured version Visualization version GIF version |
Description: Practice problem 1. Clues: 5p4e9 12061 3p2e5 12054 eqtri 2766 oveq1i 7265. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem1 | ⊢ ((3 + 2) + 4) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p2e5 12054 | . . 3 ⊢ (3 + 2) = 5 | |
2 | 1 | oveq1i 7265 | . 2 ⊢ ((3 + 2) + 4) = (5 + 4) |
3 | 5p4e9 12061 | . 2 ⊢ (5 + 4) = 9 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ ((3 + 2) + 4) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 + caddc 10805 2c2 11958 3c3 11959 4c4 11960 5c5 11961 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 ax-addass 10867 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |