Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem1 | Structured version Visualization version GIF version |
Description: Practice problem 1. Clues: 5p4e9 12131 3p2e5 12124 eqtri 2766 oveq1i 7285. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem1 | ⊢ ((3 + 2) + 4) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p2e5 12124 | . . 3 ⊢ (3 + 2) = 5 | |
2 | 1 | oveq1i 7285 | . 2 ⊢ ((3 + 2) + 4) = (5 + 4) |
3 | 5p4e9 12131 | . 2 ⊢ (5 + 4) = 9 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ ((3 + 2) + 4) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 + caddc 10874 2c2 12028 3c3 12029 4c4 12030 5c5 12031 9c9 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-addcl 10931 ax-addass 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |