Users' Mathboxes Mathbox for Filip Cernatescu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  problem1 Structured version   Visualization version   GIF version

Theorem problem1 33523
Description: Practice problem 1. Clues: 5p4e9 12061 3p2e5 12054 eqtri 2766 oveq1i 7265. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
problem1 ((3 + 2) + 4) = 9

Proof of Theorem problem1
StepHypRef Expression
1 3p2e5 12054 . . 3 (3 + 2) = 5
21oveq1i 7265 . 2 ((3 + 2) + 4) = (5 + 4)
3 5p4e9 12061 . 2 (5 + 4) = 9
42, 3eqtri 2766 1 ((3 + 2) + 4) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7255   + caddc 10805  2c2 11958  3c3 11959  4c4 11960  5c5 11961  9c9 11965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-1cn 10860  ax-addcl 10862  ax-addass 10867
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator